Skip to main content
Log in

Voltammetric determination of doxycycline in feedstock using modified carbon screen-printed electrode

  • Original Paper
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

In this work, we describe the development of an electrochemical sensing platform that employs electrochemically reduced graphene oxide (ErGO) and gold (Au) deposited on a screen-printed carbon electrode (SPCE) to synthesize Au/ErGO/SPCE for the determination of the antibiotic drug doxycycline (DC). A modified Hummer’s approach was adopted to initially prepare graphene oxide, which was then characterized by using powder XRD, FTIR, and UV spectroscopy before being utilized for modification on SPCE. Cyclic voltammetry was performed to form ErGO on SPCE to give ErGO/SPCE followed by electrodeposition of gold to get a final modified electrode Au/ErGO/SPCE. The effect of experimental conditions, like scan rate and pH on the electrochemical behavior of DC for Au/ErGO/SPCE, was evaluated. Square wave voltammetry (SWV) and cyclic voltammetry (CV) measurements were used to assess the electro-oxidation of DC on Au/ErGO/SPCE, and the electrochemical reaction conditions were also optimized. Furthermore, Au/ErGO/SPCE-based electrochemical sensors showed good recovery and high accuracy for DC determination in the complex food matrix and blood serum. The limit of detection (LOD), the limit of quantification (LOQ), and the linear calibration range of DC on Au/ErGO/SPCE under optimum experimental conditions were 0.124 µm, 0.415 µm, and 1–100 µm respectively, with high sensitivity of 0.194 μA μM−1 cm−2. Finally, the proposed electrochemical sensing platform was effectively used to determine low DC concentrations in real samples such as chicken flesh and blood serum, indicating its wide range of applications in quality control.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author, A.k. Kadu, upon reasonable request.

References

  1. E. Buduneli, S. Vardar-Şengül, N. Buduneli, G. Atilla, J. Wahlgren, T. Sorsa, J. Periodontol. (2007). https://doi.org/10.1902/jop.2007.050451

    Article  PubMed  Google Scholar 

  2. M. Mishra, B. Mishra, Acta Pharm Sin B. (2012). https://doi.org/10.1016/j.apsb.2012.05.001

    Article  Google Scholar 

  3. B. Sloan, N. Scheinfeld, Expert Opin. Drug Saf. (2008). https://doi.org/10.1517/14740330802333466

    Article  PubMed  Google Scholar 

  4. D. Vargas-Estrada, J. Gracia-Mora, H. Sumano, Res. Vet. Sci. (2008). https://doi.org/10.1016/j.rvsc.2007.07.003

    Article  PubMed  Google Scholar 

  5. E. Ayaslioglu, E. Erkek, A.A. Oba, E. Cebecioglu, Aust. Dent. J. (2005). https://doi.org/10.1111/j.1834-7819.2005.tb00373.x

    Article  PubMed  Google Scholar 

  6. F. Stickel, H.K. Seitz, J. Gastrointestin Liver Dis. (2013). PMID: 23799218.

  7. S. Thiele-Bruhn, J. Plant Nutr. Soil Sci. (2003). https://doi.org/10.1002/jpln.200390023

    Article  Google Scholar 

  8. A. Ito, T. Sato, M. Ota, M. Takemura, T. Nishikawa, S. Toba, N. Kohira, S. Miyagawa, N. Ishibashi, S. Matsumoto, R. Nakamura, M. Tsuji, Y. Yamano, Antimicrob. Agents Chemother. (2018). https://doi.org/10.1128/AAC.01454-17

    Article  PubMed  PubMed Central  Google Scholar 

  9. H. Ji, H. Sun, X. Qu, Adv. Drug Delivery Rev. (2016). https://doi.org/10.1016/j.addr.2016.04.009

    Article  Google Scholar 

  10. E.Y. Klein, T.P. Van Boeckel, E.M. Martinez, S. Pant, S. Gandra, S.A. Levin, H. Goossens, R. Laxminarayan, Proc. Natl. Acad. Sci. U. S. A. (2018). https://doi.org/10.1073/pnas.1717295115

    Article  PubMed  PubMed Central  Google Scholar 

  11. N. El Alami El Hassani, E. Llobet, L. Popescu, M. Ghita, B. Bouchikhi, N. El Bari, J. Electroanal. Chem. (2018). https://doi.org/10.1016/j.jelechem.2018.07.011

    Article  Google Scholar 

  12. R. Pavagada, K. Basavaiah, K. Tharpa, K. Basavaiah, H.D. Revanasiddappa. J. Pre Clin Clin Res. (2010).

  13. N. Ruz, M. Zabala, M.G. Kramer, M.A. Campanero, M.C. Dios-Viéitez, M.J. Blanco-Príeto, J. Chromatogr. A. (2004). https://doi.org/10.1016/J.CHROMA.2003.12.028

    Article  PubMed  Google Scholar 

  14. T. Charoenraks, S. Palaharn, K. Grudpan, W. Siangproh, O. Chailapakul, Talanta (2004). https://doi.org/10.1016/j.talanta.2004.04.036

    Article  PubMed  Google Scholar 

  15. C. Zhi-min, C. Guan-hua, H. Qing-hong, W. Zhen, G. Yun-xia, J. Hebei Univ. Nat. Sci. Ed. (2011). https://doi.org/10.3969/J.ISSN.1000-1565.2011.01.013

    Article  Google Scholar 

  16. X. Chen, W. Liang, C. Yang, W. Lin, M. Bi, VECIMS Proc. (2012). https://doi.org/10.1109/VECIMS.2012.6273220

    Article  Google Scholar 

  17. M.S. Attia, J. Pharm. Biomed. Anal. (2010). https://doi.org/10.1016/j.jpba.2009.08.017

    Article  PubMed  Google Scholar 

  18. A. Carolina Kogawa, N.P. de Mello, Pharm. Anal. Acta. (2015). https://doi.org/10.4172/2153-2435.1000463

    Article  Google Scholar 

  19. J. Adrian, F. Fernández, F. Sánchez-Baeza, M.P. Marco, J. Agric. Food Chem. (2012). https://doi.org/10.1021/jf2053355

    Article  PubMed  Google Scholar 

  20. Ye. Cai, Y. Cai, Y. Shi, S. Mou, Y. Lu, J. Chromatogr. A. (2006). https://doi.org/10.1016/j.chroma.2005.11.091

    Article  PubMed  Google Scholar 

  21. V.K. Gupta, R. Jain, K. Radhapyari, N. Jadon, S. Agarwal, Anal. Biochem. (2011). https://doi.org/10.1016/j.ab.2010.09.027

    Article  PubMed  Google Scholar 

  22. A. Ambrosi, C.K. Chua, N.M. Latiff, A.H. Loo, C.H.A. Wong, A.Y.S. Eng, A. Bonanni, M. Pumera, Chem Soc Rev. (2016). https://doi.org/10.1039/c6cs00136j

    Article  PubMed  Google Scholar 

  23. S. Patra, E. Roy, A. Tiwari, R. Madhuri, P.K. Sharma, Biosens. Bioelectron. (2017). https://doi.org/10.1016/j.bios.2016.02.067

    Article  PubMed  Google Scholar 

  24. V. Mani, A.P. Periasamy, S.M. Chen, Electrochem. Commun. (2012). https://doi.org/10.1016/j.elecom.2012.02.009

    Article  Google Scholar 

  25. X. Wang, H. Li, M. Wu, S.L. Ge, Y. Zhu, Q.J. Wang, P.G. He, Y.Z. Fang, Chin. J. Anal. Chem. (2013). https://doi.org/10.1016/S1872-2040(13)60673-8

    Article  Google Scholar 

  26. L. Fu, S. Yu, L. Thompson, A. Yu, RSC Adv. (2015). https://doi.org/10.1039/c5ra02661j

    Article  PubMed  Google Scholar 

  27. Z. Li, Z. An, Y. Guo, K. Zhang, X. Chen, D. Zhang, Z. Xue, X. Zhou, X. Lu, Talanta (2016). https://doi.org/10.1016/j.talanta.2016.09.033

    Article  PubMed  Google Scholar 

  28. Y. Li, S. Wu, Y. Chen, Q. Lu, L. Wang, Anal. Methods. (2011). https://doi.org/10.1039/c1ay05062a

    Article  PubMed  Google Scholar 

  29. S.S. Huang, L. Liu, L.P. Mei, J.Y. Zhou, F.Y. Guo, A.J. Wang, J.J. Feng, Microchim. Acta. (2016). https://doi.org/10.1007/s00604-015-1717-z

    Article  Google Scholar 

  30. M. Shanmugam, K. Kim, J. Electroanal. Chem. (2016). https://doi.org/10.1016/j.jelechem.2016.06.009

    Article  Google Scholar 

  31. M. Ho Yang, B.G. Choi, H. Park, T.J. Park, W.H. Hong, S.Y. Lee, Electroanalysis (2011). https://doi.org/10.1002/elan.201000645

    Article  Google Scholar 

  32. E.J. Lee, J.H. Choi, S.H. Um, B.K. Oh, Korean J. Chem. Eng. (2017). https://doi.org/10.1007/s11814-016-0363-4

    Article  Google Scholar 

  33. S. Liu, J. Yan, G. He, D. Zhong, J. Chen, L. Shi, X. Zhou, H. Jiang, J. Electroanal. Chem. (2012). https://doi.org/10.1016/j.jelechem.2012.03.007

    Article  Google Scholar 

  34. M.A. Raj, S.A. John, RSC Adv. (2015). https://doi.org/10.1039/c4ra11848k

    Article  PubMed  Google Scholar 

  35. C. Zou, B. Yang, D. Bin, J. Wang, S. Li, P. Yang, C. Wang, Y. Shiraishi, Y. Du, J. Colloid Interface Sci. (2017). https://doi.org/10.1016/j.jcis.2016.10.088

    Article  PubMed  Google Scholar 

  36. Z. Xue, H. Hou, H. Rao, C. Hu, X. Zhou, X. Liu, X. Lu, RSC Adv. (2015). https://doi.org/10.1039/c5ra02737c

    Article  Google Scholar 

  37. N. Shams, H.N. Lim, R. Hajian, N.A. Yusof, J. Abdullah, Y. Sulaiman, I. Ibrahim, N.M. Huang, A. Pandikumar, J. Appl, Electrochem. (2016). https://doi.org/10.1007/s10800-016-0950-4

    Article  Google Scholar 

  38. L. Ding, Y. Liu, J. Zhai, A.M. Bond, J. Zhang, Electroanalysis (2014). https://doi.org/10.1002/elan.201300226

    Article  Google Scholar 

  39. X. Hu, W. Dou, G. Zhao, J. Electroanal. Chem. (2015). https://doi.org/10.1016/j.jelechem.2015.08.009

    Article  Google Scholar 

  40. X. Zhao, J. Zuo, S. Qiu, W. Hu, Y. Wang, J. Zhang, Food Anal. Methods. (2017). https://doi.org/10.1007/s12161-017-0886-2

    Article  Google Scholar 

  41. M. Etesami, F.S. Karoonian, N. Mohamed, J. Chin. Chem. Soc. (2011). https://doi.org/10.1002/JCCS.201190107

    Article  Google Scholar 

  42. S. Chinnapaiyan, U. Rajaji, S.M. Chen, T.Y. Liu, J.I. de Oliveira Filho, Y.S. Chang, Electrochim. Acta. (2022). https://doi.org/10.1016/J.ELECTACTA.2021.139487

    Article  Google Scholar 

  43. J.M. Jian, L. Fu, J. Ji, L. Lin, X. Guo, T.L. Ren, Sens. Actuators B. (2018). https://doi.org/10.1016/J.SNB.2018.01.164

    Article  Google Scholar 

  44. R. Siburian, H. Sihotang, S. Lumban Raja, M. Supeno, C. Simanjuntak, Orient. J. Chem. (2018). https://doi.org/10.13005/ojc/340120

    Article  Google Scholar 

  45. G. Yasin, M. Arif, M. Shakeel, Y. Dun, Y. Zuo, W.Q. Khan, Y. Tang, A. Khan, M. Nadeem, Adv. Eng. Mater. (2018). https://doi.org/10.1002/adem.201701166

    Article  Google Scholar 

  46. S. Krishnamurthy, A. Esterle, N.C. Sharma, S.V. Sahi, Nanoscale Res. Lett. (2014). https://doi.org/10.1186/1556-276X-9-627

    Article  PubMed  PubMed Central  Google Scholar 

  47. E. Laviron, J. Electroanal. Chem. Interfacial Electrochem. (1979). https://doi.org/10.1016/S0022-0728(79)80075-3

    Article  Google Scholar 

  48. A.J. Bard, L.R. Faulkner, Russ. J. Electrochem. (2002). https://doi.org/10.1023/A:1021637209564

    Article  Google Scholar 

  49. A.M. Asran, M.A. Mohamed, M.K. Abd El-Rahman, M.P.S. Mousavi, Heliyon (2023). https://doi.org/10.1016/j.heliyon.2023.e15223

    Article  PubMed  PubMed Central  Google Scholar 

  50. L. Rotariu, L.G. Zamfir, C. Bala, Sens. Actuators B (2010). https://doi.org/10.1016/j.snb.2010.07.040

    Article  Google Scholar 

  51. L. Rotariu, O.M. Istrate, C. Bala, Sens. Actuators B Chem. (2014). https://doi.org/10.1016/J.SNB.2013.09.077

    Article  Google Scholar 

  52. B. Gürler, S.P. Özkorucuklu, E. Kir, J. Pharm. Biomed. Anal. (2013). https://doi.org/10.1016/J.JPBA.2013.06.009

    Article  PubMed  Google Scholar 

  53. F. Conzuelo, M. Gamella, S. Campuzano, A.J. Reviejo, J.M. Pingarrón, Anal. Chim. Acta. (2012). https://doi.org/10.1016/J.ACA.2012.05.051

    Article  PubMed  Google Scholar 

  54. R. Cánovas, N. Sleegers, A.L.N. van Nuijs, K. De Wael, Chemosensors. (2021). https://doi.org/10.3390/CHEMOSENSORS9070187

    Article  Google Scholar 

  55. M. Gashu, A. Kassa, M. Tefera, M. Amare, B.A. Aragaw, Sens. Biosensing Res. (2022). https://doi.org/10.1016/J.SBSR.2022.100507

    Article  Google Scholar 

  56. S. Han, X. Zhang, H. Sun, J. Wei, H. Wang, S. Wang, J. Jin, Z. Zhang, Electroanalysis (2021). https://doi.org/10.1002/elan.202100354

    Article  Google Scholar 

  57. P.J. Ramesh, K. Basavaiah, M.R. Divya, N. Rajendraprasad, K.B. Vinay, H.D. Revanasiddappa, J. Anal. Chem. (2011). https://doi.org/10.1134/S1061934811050157/METRICS

    Article  Google Scholar 

Download references

Acknowledgements

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Kadu.

Ethics declarations

Conflict of interest

There are no relevant financial or non-financial competing interests to report.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2615 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tiwari, M.S., Thorat, R.G., Popatkar, B.B. et al. Voltammetric determination of doxycycline in feedstock using modified carbon screen-printed electrode. ANAL. SCI. 39, 1889–1899 (2023). https://doi.org/10.1007/s44211-023-00395-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s44211-023-00395-5

Keywords

Navigation