Skip to main content
Log in

Determination of benzimidazoles in fruits by open-tubular capillary electrochromatography based on ionic liquids grafted covalent organic frameworks

  • Original Paper
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

A novel capillary electrochromatography method has been developed for the simultaneous quantification of ten benzimidazole fungicides in fruits. Herein, covalent organic frameworks (COFs) and ionic liquids (ILs) were successfully introduced to prepare open-tubular capillary column to improve the loading capacity and separation performance. The parameters effecting the analytical performance including pH and concentration of running buffer, separation voltage and the addition of organic solvent were investigated systematically. Under the optimized conditions, the method allowed the baseline separation of ten benzimidazole fungicides, and showed a good linearity in the range of 3.5–200 μg kg−1 with the detection limits between 1.0 and 2.8 μg kg−1. The intraday and interday precisions for recoveries were lower than 7.9% and 12.2%, respectively. Intraday and interday precisions for their retention times were lower than 3.2% and 6.6%, respectively. Satisfactory recoveries for grape, pear and orange samples at two concentrations were obtained ranging from 85.0 to 95.9% with RSDs lower than 7.8%, demonstrating the potential applications of the open-tubular capillary electrochromatography method for trace benzimidazole fungicides analysis in fruits.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. X.L. Hou, G. Chen, L. Zhu, T. Yang, J. Zhao, L. Wang, Y.L. Wu, J. Chromatogr. B 962, 20 (2014). https://doi.org/10.1016/j.jchromb.2014.05.005

    Article  CAS  Google Scholar 

  2. S.M. Li, Q. Liang, S.A.H. Ahmed, J. Zhang, Food Anal. Method 13, 1111 (2020). https://doi.org/10.1007/s12161-020-01708-4

    Article  Google Scholar 

  3. M. Danaher, H. De Ruyck, S.R.H. Crooks, G. Dowling, M. O’Keeffe, J. Chromatogr. B 845, 1 (2007). https://doi.org/10.1016/j.jchromb.2006.07.046

    Article  CAS  Google Scholar 

  4. C.E. Lanusse, R.K. Prichard, Drug Metab. Rev. 25, 235 (1993). https://doi.org/10.3109/03602539308993977

    Article  CAS  PubMed  Google Scholar 

  5. C. Tejada-Casado, D. Moreno-González, F.J. Lara, A.M. García-Campaña, M. del Olmo-Iruela, J. Chromatogr. A 1490, 212 (2017). https://doi.org/10.1016/j.chroma.2017.02.023

    Article  CAS  PubMed  Google Scholar 

  6. L.L. Wang, M.H. Zhang, D.F. Zhang, L. Zhang, Food Control 60, 1 (2016). https://doi.org/10.1016/j.foodcont.2015.07.024

    Article  CAS  Google Scholar 

  7. Y.Y. Wen, J.H. Li, F.F. Yang, W.W. Zhang, W.R. Li, C.Y. Liao, L.X. Chen, Talanta 106, 119 (2013). https://doi.org/10.1016/j.talanta.2012.12.011

    Article  CAS  PubMed  Google Scholar 

  8. Y. Santaladchaiyakit, S. Srijaranai, J. Sep. Sci. 37, 3354 (2014). https://doi.org/10.1002/jssc.201400699

    Article  CAS  PubMed  Google Scholar 

  9. J. Vichapong, Y. Santaladchaiyakit, R. Burakham, S. Srijaranai, Anal. Lett. 48, 617 (2014). https://doi.org/10.1080/00032719.2014.952371

    Article  CAS  Google Scholar 

  10. H. Sun, Q.W. Yu, H.B. He, Q. Lu, Z.G. Shi, Y.Q. Feng, J. Agri. Food Chem. 64, 356 (2016). https://doi.org/10.1021/acs.jafc.5b04672

    Article  CAS  Google Scholar 

  11. G. Alvarez, L. Montero, L. Llorens, M. Castro-Puyana, A. Cifuentes, Electrophoresis 39, 136 (2018). https://doi.org/10.1002/elps.201700321

    Article  CAS  PubMed  Google Scholar 

  12. X.Z. Hu, M.L. Chen, Q. Gao, Q.W. Yu, Y.Q. Feng, Talanta 89, 335 (2012). https://doi.org/10.1016/j.talanta.2011.12.038

    Article  CAS  PubMed  Google Scholar 

  13. L.C. Soliman, K.K. Donkor, J. Environ. Sci. Health. Part B 49, 153 (2014). https://doi.org/10.1080/03601234.2014.857963

    Article  CAS  Google Scholar 

  14. C.C. Liu, Q.L. Deng, G.Z. Fang, H.L. Liu, S. Wang, Anal. Chim. Acta 804, 313 (2013). https://doi.org/10.1016/j.aca.2013.10.037

    Article  CAS  PubMed  Google Scholar 

  15. X.Y. Niu, S.Y. Ding, W.F. Wang, Y.L. Xu, Y.Y. Xu, H.L. Chen, X.G. Chen, J. Chromatogr. A 1436, 109 (2016). https://doi.org/10.1016/j.chroma.2016.01.066

    Article  CAS  PubMed  Google Scholar 

  16. F.K. Liu, Y.T. Hsu, C.H. Wu, J. Chromatogr. A 1083, 205 (2005). https://doi.org/10.1016/j.chroma.2005.06.035

    Article  CAS  PubMed  Google Scholar 

  17. Y.X. Zhu, L.Y. Zhang, J.H. Qian, W.B. Zhang, Talanta 104, 173 (2013). https://doi.org/10.1016/j.talanta.2012.11.021

    Article  CAS  PubMed  Google Scholar 

  18. J.L. Chen, J. Chromatogr. A 1217, 715 (2010). https://doi.org/10.1016/j.chroma.2009.12.018

    Article  CAS  PubMed  Google Scholar 

  19. Q.S. Qu, C.H. Gu, X.Y. Hu, Anal. Chem. 84, 8880 (2012). https://doi.org/10.1021/ac3023636

    Article  CAS  PubMed  Google Scholar 

  20. Z.X. Fei, M. Zhang, J.H. Zhang, L.M. Yuan, Anal. Chim. Acta 830, 49 (2014). https://doi.org/10.1016/j.aca.2014.04.054

    Article  CAS  PubMed  Google Scholar 

  21. H.L. Qian, C.X. Yang, X.P. Yan, Nat. Commun. 10, 12104 (2019). https://doi.org/10.1038/s41467-019-08947-y

    Article  CAS  Google Scholar 

  22. C.X. Yang, C. Liu, Y.M. Cao, X.P. Yan, Chem. Commun. 51, 12254 (2015). https://doi.org/10.1039/c5cc03413b

    Article  CAS  Google Scholar 

  23. X.Y. Yuan, T.H. Ni, D.W. Zhang, H.L. Liu, B.G. Sun, Food Anal. Method 14, 1336 (2021). https://doi.org/10.1007/s12161-021-01979-5

    Article  Google Scholar 

  24. H.A. Patel, S.H. Je, J. Park, Y. Jung, A. Coskun, C.T. Yavuz, Chem. Eur. J. 20, 772 (2014). https://doi.org/10.1002/chem.201303493

    Article  CAS  PubMed  Google Scholar 

  25. S.B. Kalidindi, R.A. Fischer, Phys. Status Solidi B 250, 1119 (2013). https://doi.org/10.1002/pssb.201248477

    Article  CAS  Google Scholar 

  26. Q.R. Fang, S. Gu, J. Zheng, Z.B. Zhuang, S.L. Qiu, Y.S. Yan, Angew. Chem. Int. Ed. 53, 2878 (2014). https://doi.org/10.1002/anie.201310500

    Article  CAS  Google Scholar 

  27. J.H. Choi, W. Xie, Y.Y. Gu, C.D. Frisbie, T.P. Lodge, A.C.S. Appl, Mater. Interfaces 7, 7294 (2015). https://doi.org/10.1021/acsami.5b00495

    Article  CAS  Google Scholar 

  28. G.R. Zhang, M. Munoz, B.J.M. Etzold, A.C.S. Appl, Mater. Interfaces 7, 3562 (2015). https://doi.org/10.1021/am5074003

    Article  CAS  Google Scholar 

  29. C.C. Liu, Q.L. Deng, G.Z. Fang, X. Huang, S. Wang, A.C.S. Appl, Mater. Interfaces 7, 20430 (2015). https://doi.org/10.1021/acsami.5b07668

    Article  CAS  Google Scholar 

  30. C.C. Liu, Q.L. Deng, G.Z. Fang, M. Dang, S. Wang, Anal. Biochem. 530, 50 (2017). https://doi.org/10.1016/j.ab.2017.04.014

    Article  CAS  PubMed  Google Scholar 

  31. C.C. Liu, Q.L. Deng, G.Z. Fang, X. Huang, S. Wang, J. Mater. Chem. B 2, 5229 (2014). https://doi.org/10.1039/c4tb00663a

    Article  CAS  PubMed  Google Scholar 

  32. C.C. Liu, Q.L. Deng, G.Z. Fang, X. Feng, H.L. Qian, S. Wang, Anal. Bioanal. Chem. 406, 7175 (2014). https://doi.org/10.1007/s00216-014-8137-5

    Article  CAS  PubMed  Google Scholar 

  33. Y.Y. Fu, Z.T. Li, Q.Y. Li, C.J. Hua, Y.K. Liu, W.Q. Sun, Z.L. Chen, J. Chromatogr. A 1649, 462239 (2021). https://doi.org/10.1016/j.chroma.2021.462239

    Article  CAS  PubMed  Google Scholar 

  34. C. Tejada-Casado, M. Hernández-Mesa, M. del Olmo-Iruela, A.M. García-Campaña, Talanta 161, 8 (2016). https://doi.org/10.1016/j.talanta.2016.08.012

    Article  CAS  PubMed  Google Scholar 

  35. J. Domínguez-Álvarez, M. Mateos-Vivas, D. García-Gómez, E. Rodríguez-Gonzalo, R. Carabias-Martínez, J. Chromatogr. A 1278, 166 (2013). https://doi.org/10.1016/j.chroma.2012.12.064

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Scientific Research and Development Foundation of Tianjin Education Commission Scientific Research Plan Project (No.2018KJ186).

Author information

Authors and Affiliations

Authors

Contributions

CL: conceptualization and writing original draft. BZ: optimization of chromatographic separation, method characterization, and writing original draft. XL: preparation of ILs@COFs coated capillary column, optimization of chromatographic conditions, and writing original draft. AZ: preparation of standards and samples, and writing original draft.

Corresponding author

Correspondence to Cuicui Liu.

Ethics declarations

Conflict of interest

The authors declare there are no financial or non-financial interests that are directly or indirectly related to the work submitted for publication.

Informed consent

Not applicable.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Zhao, B., Liu, X. et al. Determination of benzimidazoles in fruits by open-tubular capillary electrochromatography based on ionic liquids grafted covalent organic frameworks. ANAL. SCI. 38, 1277–1287 (2022). https://doi.org/10.1007/s44211-022-00157-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s44211-022-00157-9

Keywords

Navigation