Skip to main content
Log in

Simultaneous Determination of Indole-3-Acetic Acid and Indole-3-Butyric Acid in Plant by Field-Amplified Sample Stacking Open-Tubular Capillary Electrochromatography Based on Solid-Phase Extraction with Calixarene Sorbent

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

This paper describes the preparation and application of methyldiethanolamine amination polychloromethyl styrene nanolatex (MDEAPL) and MDEAPL coated capillary column (ccc-MDEAPL). The ccc-MDEAPL column was characterized with steady EOF values from −14.6 × 10−5 to −19.8 × 10−5 at pH 7.08–7.56. A method using tetraazacalix[2]arene[2]triazine-modified silica gel (NCS) as solid-phase extraction (SPE) sorbent was developed for concentrating and purifying the two phytohormones, indole-3-acetic acid (IAA) and beta-indolebutyric acid (IBA) of different plants. The determination conditions of IAA and IBA for field-amplified sample stacking open-tubular capillary electrochromatography based on SPE with NCS sorbent (NCS-SPE-FASS-OT-CEC) were optimized as follows: background electrolyte, 30 mmol L−1 Tris + 24 mmol L−1 HClO4 (30 % acetonitrile, pH 7.24); ccc-MDEAPL, 50 μm i.d. × 50 cm (effective length 41.5 cm); separation voltage, −25 kV; column temperature, 25 °C; UV detection wavelength, 230 nm; water-plug injection, 30 mbar × 20 s; sample electrokinetic injection, −20 kV × 20 s. Under the optimized conditions, IAA and IBA were well separated within 6 min (Rs > 1.5). The NCS-SPE-FASS-OT-CEC method was validated in terms of linearity, sensitivity, selectivity, precision and accuracy. The detection limits were 8 ng mL−1 for IAA and 25 ng mL−1 for IBA (S/N = 3), respectively. The overall recoveries ranged from 81.0 to 89.0 %. The developed method was successfully applied for the determination of IAA and IBA in different positions of various plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Li G, Liu S, Sun Z, Xia L, Chen G, You J (2015) A simple and sensitive HPLC method based on pre-column fluorescence labelling for multiple classes of plant growth regulator determination in food samples. Food Chem 170:123–130

    Article  CAS  Google Scholar 

  2. Santner A, Estelle M (2009) Recent advances and emerging trends in plant hormone signaling. Nature 459:1071–1078

    Article  CAS  Google Scholar 

  3. Zhu JK (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53:247–273

    Article  CAS  Google Scholar 

  4. Guo X, Zhou Y, Tu F, Xiong X, Wang H, Zhang H (2011) Determination of phytohormones in plant samples based on the precolumn fluorescent derivatization with 1,3,5,7-tetramethyl-8-aminozide-difluoroboradiaza-s-indacene by HPLC for routine use. J Sep Sci 34:789–795

    Article  CAS  Google Scholar 

  5. Mendes AFS, Cidade C, Otoni WC, Soeras-Filho WS, Costa MGC (2011) Role of auxins polyamines and ethylene in rootformation and growth in sweet orange. Biol Plant 55(2):375–378

    Article  CAS  Google Scholar 

  6. Dobrev PI, Kamınek M (2002) Fast and efficient separation of cytokinins from auxin and abscisic acid and their purification using mixed-mode solid-phase extraction. J Chromatogr A 950:21–29

    Article  Google Scholar 

  7. Dobrev PI, Havlıcek L, Vagner M, Malbeck J, Kamınek M (2005) Purification and determination of plant hormones auxin and abscisic acid using solid phase extraction and two-dimensional high performance liquid chromatography. J Chromatogr A 1075:159–166

    Article  CAS  Google Scholar 

  8. Sergeeva E, Liaimer A, Bergman B (2002) Evidence for production of the phytohormone indole-3-acetic acid by cyanobacteria. Planta 215:229–238

    Article  CAS  Google Scholar 

  9. Royer A, Laporte F, Bouchonnet S, Communal PY (2006) Determination of ethephon residues in water by gas chromatography with cubic mass spectrometry after ion-exchange purification and derivatisation with N-(tert-butyldimethylsilyl)-N-methyltrifluoroacetamide. J Chromatogr A 1108:129–135

    Article  CAS  Google Scholar 

  10. Liu S, Chen W, Qu L, Gai Y, Jiang X (2013) Simultaneous determination of 24 or more acidic and alkaline phytohormones in femtomole quantities of plant tissues by high-performance liquid chromatography-electrospray ionization-ion trap mass spectrometry. Anal Bioanal Chem 405:1257–1266

    Article  CAS  Google Scholar 

  11. Balcke GU, Handrick V, Bergau N, Fichtner M, Henning A, Stellmach H, Tissier A, Hause B, Frolov A (2012) An UPLC–MS/MS method for highly sensitive high-throughput analysis of phytohormones in plant tissues. Plant Methods 8:47

    Article  CAS  Google Scholar 

  12. Ziegler J, Qwegwer J, Schubert M, Erickson JL, Schattat M, Bürstenbinder K, Grubb CD, Abel S (2014) Simultaneous analysis of apolar phytohormones and 1-aminocyclopropan-1-carboxylic acid by high performance liquid chromatography/electrospray negative ion tandem mass spectrometry via 9-fluorenylmethoxycarbonyl chloride derivatization. J Chromatogr A 1362:102–109

    Article  CAS  Google Scholar 

  13. Durgbanshi A, Arbona V, Pozo O, Miersch O, Sancho J, Goamez-Cadenas A (2005) Simultaneous determination of multiple phytohormones in plant extracts by liquid chromatography–electrospray tandem mass spectrometry. J Agric Food Chem 53:8437–8442

    Article  CAS  Google Scholar 

  14. Yin X, Liu D (2008) Polydopamine-based permanent coating capillary electrochromatography for auxin determination. J Chromatogr A 1212:130–136

    Article  CAS  Google Scholar 

  15. Huang L, He M, Chen B, Hu B (2014) Membrane-supported liquid–liquid–liquid microextraction combined with anion-selective exhaustive injection capillary electrophoresis-ultraviolet detection for sensitive analysis of phytohormones. J Chromatogr A 1343:10–17

    Article  CAS  Google Scholar 

  16. Carretero AS, Cruces-Blanco C, Pena MS, Ramirez SC, Gutierrez AF (2004) Determination of phytohormones of environmental impact by capillary zone electrophoresis. J Agric Food Chem 52:1419–1422

    Article  CAS  Google Scholar 

  17. Zhao L, Zhou J, Zhou H (2013) Hydrophobically modified quaternized celluloses as new dynamic coatings in CE for basic protein separation. Electrophoresis 34(11):1593–1599

    Article  CAS  Google Scholar 

  18. Ales M, Andrea C, Borivoj K (2015) Determination of pyruvate and lactate as potential biomarkers of embryo viability in assisted reproduction by capillary electrophoresis with contactless conductivity detection. Electrophoresis 36:1244–1250

    Article  Google Scholar 

  19. Breadmore MC, Boyce M, Macka M, Avdalovic N, Haddada PR (2000) Peak shapes in open tubular ion-exchange capillary electrochromatography of inorganic anions. J Chromatogr A 892:303–313

    Article  CAS  Google Scholar 

  20. Wang Z, Chen Y, Yuan H, Huang Z, Liu G (2000) Preparation and characterization of calixarene-coated capillaries for capillary electrophoresis. Electrophoresis 21:1620–1624

    Article  CAS  Google Scholar 

  21. Hu K, Tian Y, Yang H, Zhang J, Xie J, Ye B, Wu Y, Zhang S (2009) Preparation and characterization of p-tert-butylcalix[4]arene modified sol–gel column for open-tubular capillary electrochromatography. J Liq Chromatogr Relat Technol 32:2627–2641

    Article  CAS  Google Scholar 

  22. Wu X, Liu H, Liu H, Zhang S, Haddad PR (2003) Preparation and characterization of p-tert-butylcalix[8]arene bonded capillaries for open-tubular capillary electrochromatography. Anal Chim Acta 478:191–197

    Article  CAS  Google Scholar 

  23. Hu K, Zhang Y, Liu J, Chen K, Zhao W, Zhu W, Song Z, Ye B, Zhang S (2013) Development and application of a new 25,27-bis(l-phenylalaninemethylester-N-carbonylmethoxy)-26,28-dihydroxy-para-tert-butylcalix[4]are-ne stationary phase. J Sep Sci 36:445–453

    Article  CAS  Google Scholar 

  24. Hsieh YL, Chen T, Liu C, Liu C (2005) Titanium dioxide nanoparticles-coated column for capillary electrochromatographic separation of oligopeptides. Electrophoresis 26:4089–4097

    Article  CAS  Google Scholar 

  25. Zeng Z, Xie C, Li H, Han H, Chen Y (2002) Open-tubular capillary electrochromatography using capillary columns chemically bonded with the new host molecules calix[6]crown, calix[6]arene. Electrophoresis 23:1272–1278

    Article  CAS  Google Scholar 

  26. Huang Y, Liu Z, Zheng C, Gao R (2009) Recent developments of molecularly imprinted polymer in CEC. Electrophoresis 30:155–162

    Article  CAS  Google Scholar 

  27. Guo Y, Xu F, Meng L, Tang W, Xia Y, Wu Y, Zhang S (2013) Preparation and application of trimethylamine amination polychloromethyl styrene nanolatex coated capillary column for the determination of bromate by field-amplified sample stacking open-tubular capillary electrochromatography. Electrophoresis 34:1312–1318

    Article  CAS  Google Scholar 

  28. Zhang Y, Tian X, Guo Y, Li H, Yu A, Deng Z, Sun BB, Zhang S (2014) Analysis of nitrites and nitrates in hams and sausages by open-tubular capillary electrochromatography with a nanolatex-coated capillary column. J Agric Food Chem 62:3400–3404

    Article  CAS  Google Scholar 

  29. Luo D, Yu Q, Yin H, Feng Y (2007) Humic acid-bonded silica as a novel sorbent for solid-phase extraction of benzo[a]pyrene in edible oils. Anal Chim Acta 588:261–267

    Article  CAS  Google Scholar 

  30. Peng X, Zhao X, Feng Y (2011) Preparation of phenothiazine bonded silica gel as sorbents of solid phase extraction and their application for determination of nitrobenzene compounds in environmental water by gas chromatography-mass spectrometry. J Chromatogr A 1218:9314–9320

    Article  CAS  Google Scholar 

  31. Zhang S, Zhao W, Liang S, Yu A, Hu K, Zhao X, Wu Y (2011) Preparation and application of tetraazacalix[2]arene[2]triazine modified silica stationary phase. Patent CN: 1000 2890.6, 2011

  32. Zhang W, Deng Z, Zhao W, Guo L, Tang W, Du H, Lin L, Jiang Q, Yu A, He L, Zhang S (2014) Determination of trace acrylamide in starchy foodstuffs by HPLC using a novel mixed-mode functionalized calixarene sorbent for solid-phase extraction cleanup. J Agric Food Chem 62:6100–6107

    Article  CAS  Google Scholar 

  33. Wang L, Yang C, Zhang Q, Wang S, Lang H, Zhang S, Zhao W, Zhang J (2013) SPE–HPLC–MS/MS method for the trace analysis of tobacco-specific N-nitrosamines and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol in rabbit plasma using tetraazacalix[2]arene[2]triazine-modified silica as a sorbent. J Sep Sci 36:2664–2671

    Article  CAS  Google Scholar 

  34. Fukushi K, Nakayama Y, Tsujimoto J (2003) Highly sensitive capillary zone electrophoresis with artificial seawater as the background electrolyte and transient isotachophoresis as the on-line concentration procedure for simultaneous determination of nitrite and nitrate in seawater. J Chromatogr A 1005:197–205

    Article  CAS  Google Scholar 

  35. Thabano JRE, Breadmore MC, Hutchinson JP, Johns C, Haddad PR (2007) Capillary electrophoresis of neurotransmitters using in-line solid-phase extraction and preconcentration using a methacrylate-based weak cation-exchange monolithic stationary phase and a pH step gradient. J Chromatogr A 1175:117–126

    Article  CAS  Google Scholar 

  36. Zinellu A, Sotgia S, Deiana L, Carru C (2011) Field-amplified sample injection combined with pressure-assisted capillary electrophoresis UV detection for the simultaneous analysis of allantoin, uric acid, and malondialdehyde in human plasma. Anal Bioanal Chem 399(8):2855–2861

    Article  CAS  Google Scholar 

  37. He H, Lv X, Yu Q, Feng Y (2010) Multiresidue determination of (fluoro)quinolone antibiotics in chicken by polymer monolith microextraction and field-amplified sample stacking procedures coupled to CE-UV. Talanta 82:1562–1570

    Article  CAS  Google Scholar 

  38. Hou S, Zhu J, Ding M, Lv G (2008) Simultaneous determination of gibberellic acid, indole-3-acetic acid and abscisic acid in wheat extracts by solid-phase extraction and liquid chromatography–electrospray tandem mass spectrometry. Talanta 76:798–802

    Article  CAS  Google Scholar 

  39. Breadmore MC, Mack M, Avdalovic N, Haddad PR (2000) Open-tubular ion-exchange capillary electrochromatography of inorganic anions. Analyst 125:1235–1241

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the support of National Natural Science Foundation of China (21475119 and 21275133).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shusheng Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, L., Chen, Y., Zhao, S. et al. Simultaneous Determination of Indole-3-Acetic Acid and Indole-3-Butyric Acid in Plant by Field-Amplified Sample Stacking Open-Tubular Capillary Electrochromatography Based on Solid-Phase Extraction with Calixarene Sorbent. Chromatographia 79, 243–254 (2016). https://doi.org/10.1007/s10337-015-2999-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-015-2999-3

Keywords

Navigation