Skip to main content
Log in

Kinetics and mechanism of Eu(III) transfer in tributyl phosphate microdroplet/HNO3 aqueous solution system revealed by fluorescence microspectroscopy

  • Original Paper
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

In this study, we reveal an Eu(III) extraction mechanism at the interface between HNO3 and tributyl phosphate (TBP) solutions using fluorescence microspectroscopy. The mass transfer rate constant at the interface is obtained from the analysis of fluorescence intensity changes during the forward and backward extractions at various HNO3 and TBP concentrations to investigate the reaction mechanism. This result indicates that one nitrate ion reacts with Eu(III) at the interface, whereas TBP molecules are not involved in the interfacial reaction, which is different from the results obtained using the NaNO3 solution in our previous study. We demonstrate that the chemical species of Eu(III) complex with nitrate ion and TBP in the aqueous solution play an important role for the extraction mechanism. The rate constants of the interfacial reactions in the forward and backward extractions are (4.0–5.0) × 10–7 m M−1 s−1 and (3.2–3.3) × 10–6 m s−1, respectively. We expect that our revealed mechanism provides useful and fundamental knowledge for actual solvent extraction.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. D.S. Flett, J. Organomet. Chem. 690, 2426 (2005)

    Article  CAS  Google Scholar 

  2. F. Xie, T.A. Zhang, D. Dreisinger, F. Doyle, Miner. Eng. 56, 10 (2014)

    Article  CAS  Google Scholar 

  3. D. Tang, H. Zhang, H.K. Lee, Anal. Chem. 88, 228 (2016)

    Article  PubMed  CAS  Google Scholar 

  4. H. Sun, X. Ge, Y. Lv, A. Wang, J. Chromatogr. A 1237, 1 (2012)

    Article  PubMed  CAS  Google Scholar 

  5. J.A. Asenjo, B.A. Andrews, J. Chromatogr. A 1218, 8826 (2011)

    Article  PubMed  CAS  Google Scholar 

  6. J. Płotka-Wasylka, M. Rutkowska, K. Owczarek, M. Tobiszewski, J. Namieśnik, TrAC, Trends Anal Chem. 91, 12 (2017)

    Article  CAS  Google Scholar 

  7. M. Jovanovic, V. Manojlovic, A.M. Spasic, Metall. Mater. Eng. 26, 163 (2020)

    Article  Google Scholar 

  8. D. Skarpalezos, A. Detsi, Appl. Sci. 9, 4169 (2019)

    Article  CAS  Google Scholar 

  9. F. Chemat, V.M. Abert-Vian, H.K. Ravi, B. Khadhraoui, S. Hilali, S. Perino, A.F. Tixier, Molecules 24, 3007 (2019)

    Article  PubMed Central  CAS  Google Scholar 

  10. H. Watarai, S. Tsukahara, H. Nagatani, A. Ohashi, Bull. Chem. Soc. Jpn. 76, 1471 (2003)

    Article  CAS  Google Scholar 

  11. S.V. Smirnova, I.V. Pletnev, J. Anal. Chem. 74, 1 (2019)

    Article  CAS  Google Scholar 

  12. K.D. Clark, M.N. Emaus, M. Varona, A.N. Bowers, J.L. Anderson, J. Sep. Sci. 41, 209 (2018)

    Article  PubMed  CAS  Google Scholar 

  13. Y. Dai, J. van Spronsen, G.J. Witkamp, R. Verpoorte, Y.H. Choi, J. Nat. Prod. 76, 2162 (2013)

    Article  PubMed  CAS  Google Scholar 

  14. Á. Santana-Mayor, R. Rodríguez-Ramos, A.V. Herrera-Herrera, B. Socas-Rodríguez, M.Á. Rodríguez-Delgado, TrAC Trends Anal. Chem. 134, 116108 (2021)

    CAS  Google Scholar 

  15. S.C. Cunha, J.O. Fernandes, TrAC, Trends Anal. Chem. 105, 225 (2018)

    CAS  Google Scholar 

  16. J.L. Cortina, R. Arad-Yellin, N. Miralles, A.M. Sarstre, A. Warshawsky, React. Funct. Polym. 38, 269 (1998)

    Article  CAS  Google Scholar 

  17. I. Billard, A. Ouadi, C. Gaillard, Anal. Bioanal. Chem. 400, 1555 (2011)

    Article  PubMed  CAS  Google Scholar 

  18. B.J. Mincher, G. Modolo, S.P. Mezyk, Solvent Extr. Ion Exch. 27, 579 (2009)

    Article  CAS  Google Scholar 

  19. A.V. Mudring, S. Tang, Eur. J. Inorg. Chem. 2010, 2569 (2010)

    Article  CAS  Google Scholar 

  20. D. Whittaker, A. Geist, G. Modolo, R. Taylor, M. Sarsfield, A. Wilden, Solvent Extr. Ion Exch. 36, 223 (2018)

    Article  CAS  Google Scholar 

  21. K.L. Nash, G.J. Lumetta, Advanced separation techniques for nuclear fuel reprocessing and radioactive waste treatment (Woodhead Publishing, 2011)

    Book  Google Scholar 

  22. L.K. Sinclair, J.W. Tester, J.F.H. Thompson, R.V. Fox, Ind. Eng. Chem. Res. 58, 9199 (2019)

    Article  CAS  Google Scholar 

  23. A. Younes, C. Alliot, B. Mokili, D. Deniaud, G. Montavon, J. Champion, Solvent Extr. Ion Exch. 35, 77 (2017)

    Article  CAS  Google Scholar 

  24. A.N. Turanov, V.K. Karandashev, M. Boltoeva, Hydrometallurgy 195, 105367 (2020)

    Article  CAS  Google Scholar 

  25. L. Zou, J. Chen, X. Pan, Hydrometallurgy 50, 193 (1998)

    Article  CAS  Google Scholar 

  26. B.A. Babain, M.Y. Alyapyshev, M.D. Karavan, V. Böhmer, L. Wang, E.A. Shokova, A.E. Motornaya, I.M. Vatsouro, V.V. Kovalev, Radiochim. Acta 93, 749 (2005)

    Article  CAS  Google Scholar 

  27. T. Otaka, T. Sato, S. Ono, K. Nagoshi, R. Abe, T. Arai, S. Watanabe, Y. Sano, M. Takeuchi, K. Nakatani, Anal. Sci. 35, 1129 (2019)

    Article  PubMed  CAS  Google Scholar 

  28. M. Takeuchi, H. Tanaka, M. Yamawaki, Radiochim. Acta 63, 93 (1993)

    Article  Google Scholar 

  29. W.-B. Zhu, G.-A. Ye, F.-F. Li, H.-R. Li, J. Radioanal. Nucl. Chem. 298, 1749 (2013)

    Article  CAS  Google Scholar 

  30. S.A. Ansari, P.N. Pathak, M. Husain, A.K. Prasad, V.S. Parmar, V.K. Manchanda, Radiochim. Acta 94, 307 (2006)

    Article  CAS  Google Scholar 

  31. Y. Sasaki, Y. Tsubata, Y. Kitatsuji, Y. Sugo, N. Shirasu, Y. Morita, T. Kimura, Solvent Extr. Ion Exch. 31, 401 (2013)

    Article  CAS  Google Scholar 

  32. K.J. Huttinger, J.P. Wang, Carbon 30, 9 (1992)

    Article  Google Scholar 

  33. J.B. Lewis, Chem. Eng. Sci. 3, 248 (1954)

    Article  CAS  Google Scholar 

  34. J.P. Simonin, J. Weill, Solvent Extr. Ion Exch. 16, 1493 (1998)

    Article  CAS  Google Scholar 

  35. C.A. Launiere, A.V. Gelis, Ind. Eng. Chem. Res. 55, 2272 (2016)

    Article  CAS  Google Scholar 

  36. A. Maurice, J. Theisen, J.-C.P. Gabriel, Curr. Opin. Colloid Interface Sci. 46, 20 (2020)

    Article  CAS  Google Scholar 

  37. D. Ciceri, J.M. Perera, G.W. Stevens, J. Chem. Technol. Biotechnol. 89, 771 (2014)

    Article  CAS  Google Scholar 

  38. A. Vansteene, J.-P. Jasmin, G. Cote, C. Mariet, Ind. Eng. Chem. Res. 57, 11572 (2018)

    Article  CAS  Google Scholar 

  39. K.P. Nichols, R.R. Pompano, L. Li, A.V. Gelis, R.F. Ismagilov, J. Am. Chem. Soc. 133, 15721 (2011)

    Article  PubMed  CAS  Google Scholar 

  40. A. Miyagawa, Y. Kusano, R. Nakagawa, S. Nagatomo, Y. Sano, K. Nakatani, J. Mol. Liq. 352, 118757 (2022)

    Article  CAS  Google Scholar 

  41. H. Naganawa, S. Tachimori, Bull. Chem. Soc. Jpn. 70, 809 (1997)

    Article  CAS  Google Scholar 

  42. D.E. Irish, O. Puzic, J. Soln. Chem. 10, 377 (1981)

    Article  CAS  Google Scholar 

  43. A. Ruas, P. Pochon, J.P. Simonin, P. Moisy, Dalton Trans 39, 10148 (2010)

    Article  PubMed  CAS  Google Scholar 

  44. W. Davis Jr., J. Mrochek, C.J. Hardy, J. Inorg. Nucl. Chem. 28, 2001 (1966)

    Article  CAS  Google Scholar 

  45. H.B. Silber, M.S. Strozier, Inorg. Chim. Acta 128, 267 (1987)

    Article  CAS  Google Scholar 

  46. M.V.S.R.R. Kanth, S. Pushpavanam, S. Narasimhan, B.N. Murty, Ind. Eng. Chem. Res. 58, 20788 (2019)

    Article  CAS  Google Scholar 

  47. P. Zhang, T. Kimura, Solvent Extr. Ion Exch. 24, 149 (2006)

    Article  CAS  Google Scholar 

  48. S.L. Bajoria, V.K. Rathod, N.K. Pandey, U.K. Mudali, R. Natarajan, J. Chem. Eng. Data 57, 3730 (2012)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Innovative Nuclear Research and Development Program from the Ministry of Education, Culture, Sports, Science and Technology of Japan. This research was conducted using fluorescence spectroscopy at the Chemical Analysis Division and Open Facility, Research Facility Center for Science and Technology, University of Tsukuba.

Funding

This work was supported by Japan Atomic Energy Agency.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kiyoharu Nakatani.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 58 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miyagawa, A., Kusano, Y., Nagatomo, S. et al. Kinetics and mechanism of Eu(III) transfer in tributyl phosphate microdroplet/HNO3 aqueous solution system revealed by fluorescence microspectroscopy. ANAL. SCI. 38, 955–961 (2022). https://doi.org/10.1007/s44211-022-00117-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s44211-022-00117-3

Keywords

Navigation