Skip to main content
Log in

Synergistic Antibacterial Action of Iron, Silver, and Vanadium Ternary Oxide Nanoparticles: Green Mediated Synthesis Using Tailored Plant Extract Blends

  • Original Article
  • Published:
Biomedical Materials & Devices Aims and scope Submit manuscript

Abstract

This study explores a green approach in nanotechnology, synthesizing PVP-capped Gum Arabic emulsified ternary oxides of Fe–Ag–V nanoparticles using a blend of mushroom, guava, and plantain peel extracts. The nanoparticles acquired displayed irregular shapes and distinctive clustered patterns, as observed via scanning electron microscopy. An analysis using dynamic light scattering revealed a narrow size distribution, showcasing an average diameter of 291.6 nm and a polydispersity index of 0.137. The nanoparticles displayed exceptional inhibitory effects against Staphylococcus aureus, demonstrating a Minimum Inhibitory Concentration (MIC) of 0.3125 mg/ml and a Minimum Bactericidal Concentration (MBC) of 1.25 mg/ml. While the MIC and MBC values for other bacterial strains were slightly higher, the nanoparticles exhibited significant inhibitory actions, showcasing their potential in managing a spectrum of bacterial infections. These findings highlight their substantial potential at low concentrations, suggesting promising applications in diverse fields. This study represents a significant advancement in nanoparticle technology, offering a sustainable approach and valuable insights into their versatile applications. The nanoparticles’ multifaceted nature and strong antimicrobial capabilities position them as transformative tools in biomedicine, catalysis, and beyond, ushering in a new era of innovative solutions for real-world challenges.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

The data and materials used in this study are available upon request.

References

  1. J. Murugaiyan, P.A. Kumar, G.S. Rao, K. Iskandar, S. Hawser, J.P. Hays, Y. Mohsen, S. Adukkadukkam, W.A. Awuah, R.A.M. Jose et al., Progress in alternative strategies to combat antimicrobial resistance: focus on antibiotics. Antibiotics 11, 200 (2022). https://doi.org/10.3390/an.tibiotics11020200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. M. Miethke, M. Pieroni, T. Weber et al., Towards the sustainable discovery and development of new antibiotics. Nat. Rev. Chem. 5, 726–749 (2021). https://doi.org/10.1038/s41570-021-00313-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. G. Dhanda, Y. Acharya, J. Haldar, Antibiotic adjuvants: a versatile approach to combat antibiotic resistance. ACS Omega 8(12), 10757–10783 (2023). https://doi.org/10.1021/acsomega.3c00312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. E.U. Ikhuoria, I.E. Uwidia, R.B. Okojie, I.H. Ifijen, I.D. Chikaodili, A. Fatiqin, J. Multidiscip. Appl. Nat. Sci. (2023). https://doi.org/10.47352/jmans.2774-3047.194

    Article  Google Scholar 

  5. I.H. Ifijen, E.U. Ikhuoria, S.O. Omorogbe, B. Anegbe, E.M. Jonathan, D.I. Chikaodili, Chemical, plant and microbial mediated synthesis of tin oxide nanoparticles: antimicrobial and anticancer potency. Braz. J. Chem. Eng. (2023). https://doi.org/10.1007/s43153-023-00315-0

    Article  Google Scholar 

  6. M. Maliki, I.H. Ifijen, E.U. Ikhuoria et al., Copper nanoparticles and their oxides: optical, anticancer and antibacterial properties. Int. Nano Lett. 12, 379–398 (2022)

    Article  CAS  Google Scholar 

  7. I.H. Ifijen, E.U. Ikhuoria, S.O. Omorogbe, G.O. Otabor, A.I. Aigbodion, S.D. Ibrahim, A review of P(St-MMA-AA) synthesis via emulsion polymerization, 3D P(St-MMA-AA) photonic crystal fabrication, and photonic application. In: TMS 2023 152nd Annual Meeting & Exhibition Supplemental Proceedings. TMS 2023. The Min. Met. Mater. Ser. (Springer, Cham, 2023), (2023) https://doi.org/10.1007/978-3-031-22524-6_30

  8. E.U. Ikhuoria, S.O. Omorogbe, B.T. Sone, M. Maaza, Bioinspired shape controlled antiferromagnetic Co3O4 with prism like-anchored octahedron morphology: a facile green synthesis using Manihot esculenta Crantz extract. Sci. Technol. Mater. Sci. Technol. Mater. 30(2), 92–90 (2018)

    Article  Google Scholar 

  9. S.O. Omorogbe, A.I. Aigbodion, H.I. Ifijen, A. Simo, N.L. Ogbeide-Ihama, E.U. Ikhuoria, Low-temperature synthesis of superparamagnetic Fe3O4 morphologies tuned using oleic acid as crystal growth modifiers. In: TMS 2020 149th Annual Meeting & Exhibition Supplemental Proceedings. The Min. Met. Mater. Ser. (Springer, Cham, 2020), https://doi.org/10.1007/978-3-030-36296-6_58

  10. S.O. Omorogbe, E.U. Ikhuoria, L.I. Igiehon, G.O. Agbonlahor, I.H. Ifijen, A.I. Aigbodion, Characterization of sulphated cellulose nanocrystals as stabilizer for magnetite nanoparticles synthesis with improved magnetic properties. Nigerian J. Mater. Sci. Eng. 7(2), 23–31 (2017)

    Google Scholar 

  11. I.H. Ifijen, N.U. Udokpoh, M. Maliki, E.U. Ikhuoria, E.O. Obazee, A review of nanovanadium compounds for cancer cell therapy. In: TMS 2023 152nd Annual Meeting & Exhibition Supplemental Proceedings. TMS 2023. The Min. Met. Mater. Ser. (Springer, Cham, 2023), https://doi.org/10.1007/978-3-031-22524-6_59

  12. K.E. Mokobia, I.H. Ifijen, E.U. Ikhuoria, ZnO-NPs-coated implants with osteogenic properties for enhanced osseointegration. In: TMS 2023 152nd Annual Meeting & Exhibition Supplemental Proceedings. TMS 2023. The Min. Met. Mater. Ser. (Springer, Cham, 2023), https://doi.org/10.1007/978-3-031-22524-6_27

  13. I.H. Ifijen, M. Maliki, I.J. Odiachi, I.C. Omoruyi, A.I. Aigbodion, E.U. Ikhuoria, Performance of metallic-based nanomaterials doped with strontium in biomedical and supercapacitor electrodes: a review. Biomed. Mater. Devices (2022). https://doi.org/10.1007/s44174-022-00006-3

    Article  Google Scholar 

  14. N.U. Udokpoh, J.N. Jacob, U.D. Archibong, G.E. Onaiwu, I.H. Ifijen, Utilizations of Graphene-Based Nanomaterials for the Detection and Treatment of Mycobacterium Tuberculosis. In: TMS 2023 152nd Annual Meeting & Exhibition Supplemental Proceedings. TMS 2023. The Min. Met. Mater. Ser. (Springer, Cham, 2023), https://doi.org/10.1007/978-3-031-22524-6_5

  15. E.U. Ikhuoria, I.E. Uwidia, G.O. Otabor, I.H. Ifijen, Comparative analysis of magnesium oxide nanoparticles biosynthesized from rubber seed shell and rubber leaf extracts. Biomed. Mater. Dev. (2023). https://doi.org/10.1007/s44174-023-00139-z

    Article  Google Scholar 

  16. N.S. Mone, S. Syed, P. Ravichandiran, E.E. Kamble, K.R. Pardesi, S. Salunke-Gawali, M. Rai et al., Synergistic and additive effects of menadione in combination with antibiotics on multidrug-resistant staphylococcus aureus: insights from structure-function analysis of naphthoquinones. ChemMedChem 18(24), e202300328 (2023). https://doi.org/10.1002/cmdc.202300328

    Article  CAS  PubMed  Google Scholar 

  17. N. Paudel, M. Rai, S. Adhikari, A. Thapa, S. Bharati, B. Maharjan, R.L.S. Shrestha, K. Rav, A.V. Singh, Green extraction, phytochemical profiling, and biological evaluation of dysphania ambrosioides: an in silico and in vitro medicinal investigation. J. Herbs. Spices Med. Plants (2023). https://doi.org/10.1080/10496475.2023.2267467

    Article  Google Scholar 

  18. M. Rai, A.V. Singh, N. Paudel, A. Kanase, E. Falletta, P. Kerkar, J. Heyda, R.F. Barghash, S.P. Singh, M. Soos, Herbal concoction unveiled: a computational analysis of phytochemicals’ pharmacokinetic and toxicological profiles using novel approach methodologies (NAMs). Curr. Res. Toxicol. 5, 100118 (2023). https://doi.org/10.1016/j.crtox.2023.100118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. I. E. Uwidia, E.U. Ikhuoria, R.O. Okojie, I.H. Ifijen, I. D. Chikaodili, Synthesis of ternary oxide nanoparticles of iron, silver, and vanadium from blended extracts for potential tuberculosis treatment. In The Minerals, Metals & Materials Society (Ed.), TMS 2024 153rd Annual Meeting & Exhibition Supplemental Proceedings (pp. 118). The Minerals, Metals & Materials Series. (2024). https://doi.org/10.1007/978-3-031-50349-8_118

  20. I.E. Uwidia, E.U. Ikhuoria, R.O. Okojie, I.H. Ifijen, I.D. Chikaodili, Antibacterial properties of rod-like vanadium oxide nanostructures via ganoderma lucidum plant extract approach. Chem. Afr. (2024). https://doi.org/10.1007/s42250-023-00854-6

    Article  Google Scholar 

  21. R. O. Okojie, E.U. Ikhuoria, I.E. Uwidia, I.H. Ifijen, I.D. Chikaodili, Phytochemical-mediated green synthesis of silver oxide nanoparticles for potential cholera treatment. In The Minerals, Metals & Materials Society (Ed.), TMS 2024 153rd Annual Meeting & Exhibition Supplemental Proceedings. The Minerals, Metals & Materials Series. (2024). https://doi.org/10.1007/978-3-031-50349-8_115

  22. E.U. Ikhuoria, I.E. Uwidia, R.O. Okojie, I.H. Ifijen, I.D. Chikaodili, A. Fatiqin, Advancing green nanotechnology: harnessing the bio-reducing properties of Musa paradisiaca peel extract for sustainable synthesis of iron oxide nanoparticles. J. Multidiscip. Appl. Nat. Sci. (2023). https://doi.org/10.47352/jmans.2774-3047.194

    Article  Google Scholar 

  23. E.U. Ikhuoria, I.E. Uwidia, R.O. Okojie, I.H. Ifijen, I.D. Chikaodili, Prospects of Utilizing Environmentally Friendly Iron Oxide Nanoparticles Synthesized from Musa Paradisiaca Extract for Potential COVID-19 Treatment. In The Minerals, Metals & Materials Society (Ed.), TMS 2024 153rd Annual Meeting & Exhibition Supplemental Proceedings. The Minerals, Metals & Materials Series. (2024). https://doi.org/10.1007/978-3-031-50349-8_116

  24. B. Abebe, H.C.A. Murthy, E. Zerefa, Y. Adimasu, PVA assisted ZnO based mesoporous ternary metal oxides nanomaterials: synthesis, optimization, and evaluation of antibacterial activity. Mater. Res. Express 7, 045011 (2020)

    Article  CAS  ADS  Google Scholar 

  25. R. Javed, M. Zia, S. Naz et al., Role of capping agents in the application of nanoparticles in biomedicine and environmental remediation: recent trends and future prospects. J. Nanobiotechnol. 18, 172 (2020). https://doi.org/10.1186/s12951-020-00704-4

    Article  Google Scholar 

  26. D. Gentili, G. Ori, Reversible assembly of nanoparticles: theory, strategies, and computational simulations. Nanoscale 14(36), 14385–14432 (2022). https://doi.org/10.1039/D2NR02640F

    Article  CAS  PubMed  Google Scholar 

  27. V. Singh, S. Kashyap, U. Yadav, A. Srivastava, A.V. Singh, R.K. Singh, S.K. Singh, P.S. Saxena, Nitrogen doped carbon quantum dots demonstrate no toxicity under in vitro conditions in a cervical cell line and in vivo in Swiss albino mice. Toxicol. Res. 8(3), 395–406 (2019). https://doi.org/10.1039/c8tx00260f

    Article  CAS  Google Scholar 

  28. E. Bertolucci, A.M.R. Galletti, C. Antonetti, M. Marracci, B. Tellini, F. Piccinelli, C. Visone, Chemical and magnetic properties characterization of magnetic nanoparticles. In 2015 IEEE International Instrumentation and Measurement Technology Conference (I2MTC) Proceedings (pp. 1492–1496). IEEE. (2015). https://doi.org/10.1109/i2mtc.2015.7151498

  29. Y. Wu, G. Gao, G. Wu, Self-assembled three-dimensional hierarchical porous V2O5/graphene hybrid aerogels for supercapacitors with high energy density and long cycle life. J. Mater. Chem. A 3, 1828–1832 (2015). https://doi.org/10.1039/C4TA05537C

    Article  CAS  Google Scholar 

  30. R. Li, Z. Chen, N. Ren, Y. Wang, Y. Wang, F. Yu, Biosynthesis of silver oxide nanoparticles and their photocatalytic and antimicrobial activity evaluation for wound healing applications in nursing care. J. Photochem. Photobiol. B: Biol. 199, 111593 (2019). https://doi.org/10.1016/j.jphotobiol.2019.111593

    Article  CAS  Google Scholar 

  31. L. Sutrisno, K. Ariga, Nanoarchitectonics with engineered pores for cancer therapy. NPG Asia Mater (2023). https://doi.org/10.1038/s41427-023-00469-w

    Article  Google Scholar 

  32. Z. Hou, Y. Shankar, Y. Liu, F. Ding, J. Subramanion, V. Ravikumar, R. Zamudio-Vazquez, D. Keogh, H. Lim, M. Tay, S. Bhattacharjya, S. Rice, J. Shi, H. Duan, X. Liu, Y. Mu, N. Tan, K. Tam, K. Pethe, M. Chan-Park, Nanoparticles of short cationic peptidopolysaccharide self-assembled by hydrogen bonding with antibacterial effect against multidrug-resistant bacteria. ACS Appl. Mater. Interfaces. 9(44), 38288–38303 (2017). https://doi.org/10.1021/acsami.7b12120

    Article  CAS  PubMed  Google Scholar 

  33. D. Linklater, V. Baulin, X. Guével, J. Fleury, E. Hanssen, T. Nguyen, S. Juodkazis, G. Bryant, R. Crawford, P. Stoodley, E. Ivanova, Antibacterial action of nanoparticles by lethal stretching of bacterial cell membranes. Adv. Mater. (2020). https://doi.org/10.1002/adma.202005679

    Article  PubMed  Google Scholar 

  34. S. Yang, X. Han, Y. Yang, H. Qiao, Z. Yu, Y. Liu, J. Wang, T. Tang, Bacteria-targeting nanoparticles with microenvironment-responsive antibiotic release to eliminate intracellular Staphylococcus aureus and associated infection. ACS Appl. Mater. Interfaces. 10(17), 14299–14311 (2018). https://doi.org/10.1021/acsami.7b15678

    Article  CAS  PubMed  Google Scholar 

  35. W. Li, X. Xie, Q. Shi, H. Zeng, Y. Ouyang, Y. Chen, Antibacterial activity and mechanism of silver nanoparticles on Escherichia coli. Appl. Microbiol. Biotechnol. 85, 1115–1122 (2009). https://doi.org/10.1007/s00253-009-2159-5

    Article  CAS  PubMed  Google Scholar 

  36. M. Urfer, J. Bogdanović, F. Monte, K. Moehle, K. Zerbe, U. Omasits, C. Ahrens, G. Pessi, L. Eberl, J. Robinson, A peptidomimetic antibiotic targets outer membrane proteins and disrupts selectively the outer membrane in Escherichia coli. J. Biol. Chem. 291, 1921–1932 (2015). https://doi.org/10.1074/jbc.M115.691725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. A. Clements, F. Gaboriaud, J. Duval, J. Farn, A. Jenney, T. Lithgow, O. Wijburg, E. Hartland, R. Strugnell, The major surface-associated saccharides of Klebsiella pneumoniae contribute to host cell association. PLoS ONE (2008). https://doi.org/10.1371/journal.pone.0003817

    Article  PubMed  PubMed Central  Google Scholar 

  38. R. Dunstan, R. Bamert, M. Belousoff, F. Short, C. Barlow, D. Pickard, J. Wilksch, R. Schittenhelm, R. Strugnell, G. Dougan, T. Lithgow, Mechanistic insights into the capsule-targeting depolymerase from a Klebsiella pneumoniae bacteriophage. Microbiol. Spectr. (2021). https://doi.org/10.1128/Spectrum.01023-21

    Article  PubMed  PubMed Central  Google Scholar 

  39. Y. Wang, N. Vischer, D. Wekking, A. Boggian, P. Setlow, S. Brul, Visualization of SpoVAEa protein dynamics in dormant spores of Bacillus cereus and dynamic changes in their germinosomes and SpoVAEa during germination. Microbiol. Spectr. (2022). https://doi.org/10.1128/spectrum.00666-22

    Article  PubMed  PubMed Central  Google Scholar 

  40. L. Hornstra, Y. Vries, W. Vos, T. Abee, M. Wells-Bennik, gerR, a Novel ger operon Involved in l-alanine- and inosine-initiated germination of Bacillus cereus ATCC 14579. Appl. Environ. Microbiol. 71, 774–781 (2005). https://doi.org/10.1128/AEM.71.2.774-781.2005

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  41. S. Bertoni, Z. Liu, A. Correia, J. Martins, A. Rahikkala, F. Fontana, M. Kemell, D. Liu, B. Albertini, N. Passerini, W. Li, H. Santos, pH and reactive oxygen species-sequential responsive nano-in-micro composite for targeted therapy of inflammatory bowel disease. Adv .Funct. Mater. (2018). https://doi.org/10.1002/adfm.201806175

    Article  Google Scholar 

  42. H. Kumar, K. Bhardwaj, E. Nepovimova, K. Kuča, D. Dhanjal, S. Bhardwaj, S. Bhatia, R. Verma, D. Kumar, Antioxidant functionalized nanoparticles: a combat against oxidative stress. Nanomaterials (2020). https://doi.org/10.3390/nano10071334

    Article  PubMed  PubMed Central  Google Scholar 

  43. W. Zhang, Y. Li, J. Niu, Y. Chen, Photogeneration of reactive oxygen species on uncoated silver, gold, nickel, and silicon nanoparticles and their antibacterial effects. Langmuir: ACS J. Surf. Coll. 29(15), 4647–4651 (2013). https://doi.org/10.1021/la400500t

    Article  CAS  Google Scholar 

  44. M. Volkert, N. Elliott, D. Housman, Functional genomics reveals a family of eukaryotic oxidation protection genes. Proc. Natl. Acad. Sci. USA. 97(26), 14530–14535 (2000). https://doi.org/10.1073/PNAS.260495897

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  45. R. Hamida, M. Ali, D. Goda, M. Khalil, A. Redhwan, Cytotoxic effect of green silver nanoparticles against ampicillin resistant Klebsiella pneumoniae. RSC Adv. 10, 21136–21146 (2020). https://doi.org/10.1039/d0ra03580g

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  46. N. Kudaer, M. Risan, E. Yousif, M. Kadhom, R. Raheem, I. Salman, Effect of zinc oxide nanoparticles on capsular gene expression in Klebsiella pneumoniae isolated from clinical samples. Biomimetics (2022). https://doi.org/10.3390/biomimetics7040180

    Article  PubMed  PubMed Central  Google Scholar 

  47. M. Mols, R. Kranenburg, C. Melis, R. Moezelaar, T. Abee, Analysis of acid-stressed Bacillus cereus reveals a major oxidative response and inactivation-associated radical formation. Environ. Microbiol. 12(4), 873–885 (2010). https://doi.org/10.1111/j.1462-2920.2009.02132.x

    Article  CAS  PubMed  Google Scholar 

  48. Y. Wu, L. Zhang, Y. Zhou, Y. Li, Q. Liu, J. Hu, J. Yang, Light-induced ZnO/Ag/rGO bactericidal photocatalyst with synergistic effect of sustained release of silver ions and enhanced reactive oxygen species. Chin. J. Catal. (2019). https://doi.org/10.1016/S1872-2067(18)63193-6

    Article  Google Scholar 

  49. S. Akhter, F. Mohammad, S. Ahmad, Terminalia belerica mediated green synthesis of nanoparticles of copper, iron and zinc metal oxides as the alternate antibacterial agents against some common pathogens. BioNanoScience 9, 365–372 (2019). https://doi.org/10.1007/S12668-019-0601-4

    Article  Google Scholar 

  50. M. Hartmann, M. Berditsch, J. Hawecker, M. Ardakani, D. Gerthsen, A. Ulrich, Damage of the bacterial cell envelope by antimicrobial peptides gramicidin S and PGLa as revealed by transmission and scanning electron microscopy. Antimicrob. Agents Chemother. 54, 3132–3142 (2010). https://doi.org/10.1128/AAC.00124-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. I. Albesa, M. Becerra, P. Battán, P. Páez, Oxidative stress involved in the antibacterial action of different antibiotics. Biochem. Biophys. Res. Commun. 317(2), 605–609 (2004). https://doi.org/10.1016/J.BBRC.2004.03.085

    Article  CAS  PubMed  Google Scholar 

  52. P. Prema, P. Iniya, G. Immanuel, Microbial mediated synthesis, characterization, antibacterial and synergistic effect of gold nanoparticles using Klebsiella pneumoniae (MTCC-4030). RSC Adv. 6, 4601–4607 (2016). https://doi.org/10.1039/C5RA23982F

    Article  CAS  ADS  Google Scholar 

  53. D. Chudobová, K. Číhalová, P. Kopel, L. Melichar, B. Ruttkay-Nedecky, M. Vaculovičová, V. Adam, R. Kizek, Complexes of metal-based nanoparticles with chitosan suppressing the risk of Staphylococcus aureus and Escherichia coli infections. (2015). https://doi.org/10.1016/B978-0-12-801317-5.00013-X

    Article  Google Scholar 

  54. R. Thurman, C. Gerba, G. Bitton, The molecular mechanisms of copper and silver ion disinfection of bacteria and viruses. Crit. Rev. Environ. Sci. Technol. 18, 295–315 (1988). https://doi.org/10.1080/10643388909388351

    Article  CAS  Google Scholar 

  55. N. Agrawal, N. Soleja, R. Bano, R. Nazir, T. Siddiqi, M. Mohsin, FRET-based genetically encoded sensor to monitor silver ions. ACS Omega 6, 14164–14173 (2021). https://doi.org/10.1021/acsomega.1c00741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. I. Fontoura, T. Veriato, L. Raniero, M. Castilho, Analysis of capped silver nanoparticles combined with imipenem against different susceptibility profiles of Klebsiella pneumoniae. Antibiotics (2023). https://doi.org/10.3390/antibiotics12030535

    Article  PubMed  PubMed Central  Google Scholar 

  57. N. Ramarao, D. Lereclus, The InhA1 metalloprotease allows spores of the B. cereus group to escape macrophages. Cell. Microbiol. (2005). https://doi.org/10.1111/j.1462-5822.2005.00562.x

    Article  PubMed  Google Scholar 

  58. R. Eijlander, S. Holsappel, A. Jong, A. Ghosh, G. Christie, O. Kuipers, SpoVT: from fine-tuning regulator in Bacillus subtilis to essential sporulation protein in Bacillus cereus. Front. Microbiol. (2016). https://doi.org/10.3389/fmicb.2016.01607

    Article  PubMed  PubMed Central  Google Scholar 

  59. T. Naganuma, The relationship between cell adhesion force activation on nano/micro-topographical surfaces and temporal dependence of cell morphology. Nanoscale 9(35), 13171–13186 (2017). https://doi.org/10.1039/c7nr04785a

    Article  CAS  PubMed  Google Scholar 

  60. W. Pajerski, D. Ochonska, M. Brzychczy-Wloch, P. Indyka, M. Jarosz, M. Golda-Cepa, Z. Sojka, A. Kotarba, Attachment efficiency of gold nanoparticles by Gram-positive and Gram-negative bacterial strains governed by surface charges. J. Nanopart. Res. (2019). https://doi.org/10.1007/s11051-019-4617-z

    Article  Google Scholar 

  61. A. Barras, F. Martin, O. Bande, J. Baumann, J. Ghigo, R. Boukherroub, C. Beloin, A. Siriwardena, S. Szunerits, Glycan-functionalized diamond nanoparticles as potent E. coli anti-adhesives. Nanoscale 5(6), 2307–2316 (2013). https://doi.org/10.1039/c3nr33826f

    Article  CAS  PubMed  ADS  Google Scholar 

  62. N. Gusnaniar, H. Mei, W. Qu, T. Nuryastuti, J. Hooymans, J. Sjollema, H. Busscher, Physico-chemistry of bacterial transmission versus adhesion. Adv. Coll. Interface. Sci. 250, 15–24 (2017). https://doi.org/10.1016/j.cis.2017.11.002

    Article  CAS  Google Scholar 

  63. B. Vu, M. Chen, R. Crawford, E. Ivanova, Bacterial extracellular polysaccharides involved in biofilm formation. Molecules 14, 2535–2554 (2009). https://doi.org/10.3390/molecules14072535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. J. Li, R. Nickel, J. Wu, F. Lin, J. Lierop, S. Liu, A new tool to attack biofilms: driving magnetic iron-oxide nanoparticles to disrupt the matrix. Nanoscale 11(14), 6905–6915 (2019). https://doi.org/10.1039/c8nr09802f

    Article  CAS  PubMed  Google Scholar 

  65. M. Brasil, A. Filgueiras, M. Campos, M. Neves, M. Eugênio, L. Sena, C. Sant’Anna, V. Silva, C. Diniz, A. Sant’Ana, Synergism in the antibacterial action of ternary mixtures involving silver nanoparticles, chitosan and antibiotics. J. Braz. Chem. Soc. 29, 2026–2033 (2018). https://doi.org/10.21577/0103-5053.20180077

    Article  CAS  Google Scholar 

  66. I. Hwang, J. Hwang, H. Choi, K. Kim, D. Lee, Synergistic effects between silver nanoparticles and antibiotics and the mechanisms involved. J. Med. Microbiol. 61(Pt 12), 1719–1726 (2012). https://doi.org/10.1099/jmm.0.047100-0

    Article  CAS  PubMed  Google Scholar 

  67. T. Alnasrawi, Z. Althabet, G. Salih, M. Al-Jassani, Antibacterial activity of some nanoparticles against some pathogenic bacteria that isolated from urinary tract infections patient. J Drug Deliv. 9, 682–685 (2019). https://doi.org/10.25258/IJDDT.9.4.28

    Article  Google Scholar 

  68. D. Ghosal, M. Omelchenko, E. Gaidamakova, V. Matrosova, A. Vasilenko, A. Venkateswaran, M. Zhai, H. Kostandarithes, H. Brim, K. Makarova, L. Wackett, J. Fredrickson, M. Daly, How radiation kills cells: survival of Deinococcus radiodurans and Shewanella oneidensis under oxidative stress. FEMS Microbiol. Rev. 29(2), 361–375 (2005). https://doi.org/10.1016/J.FEMSRE.2004.12.007

    Article  CAS  PubMed  Google Scholar 

  69. X. Huangfu, Y. Xu, C. Liu, Q. He, J. Ma, C. Ma, R. Huang, A review on the interactions between engineered nanoparticles with extracellular and intracellular polymeric substances from wastewater treatment aggregates. Chemosphere 219, 766–783 (2019). https://doi.org/10.1016/j.chemosphere.2018.12.044

    Article  CAS  PubMed  ADS  Google Scholar 

  70. S. Taheri, A. Cavallaro, S. Christo, L. Smith, P. Majewski, M. Barton, J. Hayball, K. Vasilev, Substrate independent silver nanoparticle based antibacterial coatings. Biomaterials 35(16), 4601–4609 (2014). https://doi.org/10.1016/j.biomaterials.2014.02.033

    Article  CAS  PubMed  Google Scholar 

  71. L. Wang, C. Hu, L. Shao, The antimicrobial activity of nanoparticles: present situation and prospects for the future. Int. J. Nanomed. 12, 1227–1249 (2017). https://doi.org/10.2147/IJN.S121956

    Article  CAS  Google Scholar 

  72. J. Rosenholm, C. Sahlgren, M. Lindén, Towards multifunctional, targeted drug delivery systems using mesoporous silica nanoparticles–opportunities & challenges. Nanoscale 2(10), 1870–1883 (2010). https://doi.org/10.1039/c0nr00156b

    Article  CAS  PubMed  ADS  Google Scholar 

  73. M. Khin, A. Nair, V. Babu, R. Murugan, S. Ramakrishna, A review on nanomaterials for environmental remediation. Energy Environ. Sci. 5, 8075–8109 (2012). https://doi.org/10.1039/C2EE21818F

    Article  CAS  Google Scholar 

  74. M. Nasrollahzadeh, M. Sajjadi, S. Iravani, R. Varma, Green-synthesized nanocatalysts and nanomaterials for water treatment: Current challenges and future perspectives. J. Hazard. Mater. 401, 123401 (2020). https://doi.org/10.1016/j.jhazmat.2020.123401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. M. Nasrollahzadeh, M. Sajjadi, S. Iravani, R. Varma, Trimetallic nanoparticles: greener synthesis and their applications. Nanomaterials (2020). https://doi.org/10.3390/nano10091784

    Article  PubMed  PubMed Central  Google Scholar 

  76. B. Cuenya, Metal nanoparticle catalysts beginning to shape-up. Acc. Chem. Res. 46, 1682–1691 (2013). https://doi.org/10.1021/AR300226P

    Article  Google Scholar 

  77. A. Jose, M. Gizdavic-Nikolaidis, S. Swift, Antimicrobial coatings: reviewing options for healthcare applications. Appl. Microbiol. 3, 145–174 (2023). https://doi.org/10.3390/applmicrobiol3010012

    Article  Google Scholar 

  78. L.A. Handojo, D. Pramudita, D. Mangindaan, A. Indarto, Application of nanoparticles in environmental cleanup production potential risks and solutions, in Emerging eco-friendly green technologies for wastewater treatment. (Springer, Cham, 2020). https://doi.org/10.1007/978-981-15-1390-9_3

    Chapter  Google Scholar 

Download references

Acknowledgements

The authors express heartfelt gratitude to TETFUND for their generous research funding, which played a pivotal role in the successful completion of their study. This support enabled crucial experiments, access to essential resources, and the presentation of findings at conferences, elevating the overall quality and impact of the research. TETFUND’s commitment to fostering research excellence and their significant contribution to the academic community is deeply appreciated. Their support not only advanced the authors’ careers but also contributed to the progress of knowledge in Nanotechnology. The authors extend their wholehearted thanks to TETFUND for their unwavering support and acknowledge the valuable opportunity provided by their research funding.

Funding

This work was funded by TETFUND.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Esther U. Ikhuoria or Ikhazuagbe H. Ifijen.

Ethics declarations

Competing Interests

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Ethical Approval

Not applicable.

Consent for Publication

Each author in this manuscript has given permission for this work to be published.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ikhuoria, E.U., Uwidia, I.E., Okojie, R.O. et al. Synergistic Antibacterial Action of Iron, Silver, and Vanadium Ternary Oxide Nanoparticles: Green Mediated Synthesis Using Tailored Plant Extract Blends. Biomedical Materials & Devices (2024). https://doi.org/10.1007/s44174-024-00162-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s44174-024-00162-8

Keywords

Navigation