Skip to main content
Log in

Green Fabrication, Characterization of Zinc Oxide Nanoparticles Using Plant Extract of Momordica charantia and Curcuma zedoaria and Their Antibacterial and Antioxidant Activities

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

In recent years, the rapid increase in the resistance of microorganisms to antibiotics has produced major health issues. Novel applications for these compounds have been developed by integrating modern technologies such as nanotechnology and material science with the innate antibacterial activity of metals. The current study demonstrated the synthesis of zinc oxide nanoparticles (ZnO NPs) from Momordica charantia and Curcuma zedoaria plant extracts, as well as their antibacterial properties. The synthesis of ZnO NPs was confirmed via UV-visible spectroscopy, showing clear peaks at 375 and 350 nm for M. charantia and C. zedoaria, respectively. Scanning electron microscopy (SEM) analysis revealed crystals of irregular shapes for the majority of the nanoparticles synthesized from both plants. The existence of ZnO NPs was confirmed using X-ray diffraction while the particle size was calculated using Scherrer’s equation, which was 19.65 for C. zedoaria and 17.02 for M. charantia. Different functional groups were detected through Fourier transform infrared spectroscopy analysis. The antibacterial activity of the ZnO NPs at three different concentrations (250, 500, and 1000 µg/ml) was assessed against three different bacterial strains, i.e., Escherichia coli (E. coli), Staphylococcus aureus (S. aureus), and Pseudomonas aeruginosa (P. aeruginosa), using disc diffusion methods. The ZnO nanoparticles showed promising antibacterial activity against bacterial strains. For C. zedoaria, the highest growth inhibition was observed at a concentration of 1000 µg/ml, which was 18, 19, and 18 mm as compared to antibiotics (15, 11, and 15.6 mm) against E. coli, P. aeruginosa, and S. aureus, respectively. Similarly, at 1000 µg/ml of NPs, M. charantia showed the highest growth inhibition (18, 15, and 17 mm) as compared to antibiotics (15, 11, and 14.6 mm) against E. coli, P. aeruginosa, and S. aureus, respectively. In conclusion, compared to pure plant extract and antibiotics, ZnO NPs at a higher concentration (1000 µg/ml) exhibited a significant difference in zone of inhibition against all the bacterial strains. Different concentrations of ZnO using M. charantia and C. zedoaria caused increments in the scavenging of 2,2-diphenyl-1-picrylhydrazyl (DPPH) radicals and 2,2-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS). The nanoparticles extracted using C. zedoaria exhibited higher antioxidant activity than M. charantia. Greenly synthesized ZnO nanoparticles have remarkable antibacterial properties and antioxidant activity, making them a promising contender for future pharmaceutical application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Code Availability

Not applicable.

References

  1. Abdelbaky, A. S., Abd El-Mageed, T. A., Babalghith, A. O., Selim, S., & Mohamed, A. M. H. A. (2022). Green synthesis and characterization of ZnO nanoparticles using Pelargonium odoratissimum (L.) aqueous leaf extract and their antioxidant, antibacterial and anti-inflammatory activities. Antioxidants, 11, 1444. https://doi.org/10.3390/antiox11081444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Dhawi, F., El-Beltagi, H. S., Abdel-Mobdy, Y. E., Salah, S. M., Ghaly, I. S., Abdel-Rahim, E. A., Soliman, A. M., & Mohamed, H. I. (2021). Synergistic impact of the pomegranate peels and its nanoparticles against the infection of tobacco mosaic virus (TMV). Fresenius Environmental Bulletin, 30(1), 731-746.

    CAS  Google Scholar 

  3. Abou-Okeil, A. (2012). Ag nanoparticles growing onto cotton fabric using chitosan as a template. Journal of Natural Fibers, 9(2), 61-72.

    Article  CAS  Google Scholar 

  4. Sithara, R., Selvakumar, P., Arun, C., Anandan, S., & Sivashanmugam, P. (2017). Economical synthesis of silver nanoparticles using leaf extract of Acalypha hispida and its application in the detection of Mn (II) ions. Journal of Advanced Research, 8(6), 561-568.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bukhari, A., Ijaz, I., Gilani, E., Nazir, A., Zain, H., Saeed, R., Alarfaji, S. S., Hussain, S., Aftab, R., & Naseer, Y. (2021). Green synthesis of metal and metal oxide nanoparticles using different plants’ parts for antimicrobial activity and anticancer activity: A review article. Coatings, 11, 1374. https://doi.org/10.3390/coatings11111374

    Article  CAS  Google Scholar 

  6. Pal, S. L., Jana, U. P. K., Manna, G. P., Mohanta, R., & Manavalan, R. (2011). Nanoparticle: An overview of preparation and characterization. Journal of Applied Pharmaceutical Science, 1(6), 228-234.

    Google Scholar 

  7. Amer, A., Ghoneim, M., Shoala, T., & Mohamed, H. I. (2021). Comparative studies on French basil (Ocimum basilicum L. cv. Grand verde) as affected by alternatives spraying with humic, salicylic, and glycyrrhizic acids and their nanocomposites. Environmental Science and Pollution Research, 28, 47196-47212.

    Article  CAS  PubMed  Google Scholar 

  8. Rana, R. A., Siddiqui, M. N., Skalicky, M., Brestic, M., Hossain, A., Kayesh, E., Popov, M., Hejnak, V., Gupta, D. R., Mahmud, N. U., et al. (2021). Prospects of nanotechnology in improving the productivity and quality of horticultural crops. Horticulturae, 7, 332. https://doi.org/10.3390/horticulturae7100332

    Article  Google Scholar 

  9. Rahman, M. M., Islam, M. R., Akash, S., Harun-Or-Rashid, M., Ray, T. K., Rahaman, M. S., Islam, M., Anika, F., Hosain, M. K., Aovi, F. I., & Hemeg, H. A. (2022). Recent advancements of nanoparticles application in cancer and neurodegenerative disorders: At a glance. Biomedicine & Pharmacotherapy, 153, 113305.

    Article  CAS  Google Scholar 

  10. Haseeb, Q., Hamdani, S. D. A., Akram, A., Khan, D. A., Rajput, T. A. & Babar, M. M. (2020). Nanobiotechnology: Paving the way to personalized medicine. NanoBioMedicine, 17-32.

  11. Lugani, Y., Sooch, B. S., Singh, P. & Kumar, S. (2021). Nanobiotechnology applications in food sector and future innovations. In Microbial biotechnology in food and health (pp. 197-225). Academic Press.

  12. Ealia, S. A. M., Saravanakumar, M. P., (2017). November. A review on the classification, characterisation, synthesis of nanoparticles and their application. In IOP conference series: Materials science and engineering, IOP Publishing, 263(3), 032019.

  13. Marouzi, S., Sabouri, Z., & Darroudi, M. (2021). Greener synthesis and medical applications of metal oxide nanoparticles. Ceramics International, 47(14), 19632-19650.

    Article  CAS  Google Scholar 

  14. Hakkar, K. N., Mhatre, S. S., & Parikh, R. Y. (2010). Biological synthesis of metallic nanoparticles. Nanomedicine: nanotechnology, Biology and Medicine, 6(2), 257-262.

    Article  Google Scholar 

  15. Singh, P. Y., Kim, J., Wang, C., Mathiyalagan, R., & Yang, D. C. (2018). Weissella oryzae DC6-facilitated green synthesis of silver nanoparticles and their antimicrobial potential. Artificial cells, Nanomedicine, and Biotechnology, 44(6), 1569-1575.

    Article  Google Scholar 

  16. Alyamani, A. A., Albukhaty, S., Aloufi, S., AlMalki, F. A., Al-Karagoly, H., & Sulaiman, G. M. (2021). Green fabrication of zinc oxide nanoparticles using phlomis leaf extract: Characterization and in vitro evaluation of cytotoxicity and antibacterial properties. Molecules, 26(20), 6140.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Abbasi, E., Milani, M., Fekri Aval, S., Kouhi, M., Akbarzadeh, A., Tayefi Nasrabadi, H., Nikasa, P., Joo, S. W., Hanifehpour, Y., Nejati-Koshki, K., & Samiei, M. (2016). Silver nanoparticles: Synthesis methods, bio-applications and properties. Critical Reviews in Microbiology, 42(2), 173-180.

    CAS  PubMed  Google Scholar 

  18. Prakash, P., Gnanaprakasam, P., Emmanuel, R., Arokiyaraj, S., & Saravanan, M. (2013). Green synthesis of silver nanoparticles from leaf extract of Mimusops elengi, Linn. for enhanced antibacterial activity against multi drug resistant clinical isolates. Colloids and Surfaces B: Biointerfaces, 108, 255-259.

    Article  CAS  PubMed  Google Scholar 

  19. García-Barrasa, J., López-de-Luzuriaga, J., & Monge, M. (2011). Silver nanoparticles synthesis through chemical methods in solution and biomedical applications. Open Chemistry, 9(1), 7-19.

    Article  Google Scholar 

  20. Ahmed, S., Ahmad, M., Swami, B. L., & Ikram, S. (2016). A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: A green expertise. Journal of Advanced Research, 7(1), 17-28.

    Article  CAS  PubMed  Google Scholar 

  21. Das, R. K., Pachapur, V. L., Lonappan, L., Naghdi, M., Pulicharla, R., Maiti, S., Cledon, M., Dalila, L. M. A., Sarma, S. J., & Brar, S. K. (2017). Biological synthesis of metallic nanoparticles: Plants, animals and microbial aspects. Nanotechnology for Environmental Engineering, 2(1), 1-21.

    Article  CAS  Google Scholar 

  22. Rautela, A., & Rani, J. (2019). Green synthesis of silver nanoparticles from Tectona grandis seeds extract: Characterization and mechanism of antimicrobial action on different microorganisms. Journal of Analytical Science and Technology, 10(1), 1-10.

    Article  Google Scholar 

  23. Rafique, M., Sadaf, I., Rafique, M. S., & Tahir, M. B. (2017). A review on green synthesis of silver nanoparticles and their applications. Artificial Cells, Nanomedicine, and Biotechnology, 45(7), 1272-1291.

    Article  CAS  PubMed  Google Scholar 

  24. Mogazy, A. M., Mohamed, H. I., & El-Mahdy, O. M. (2022). Calcium and iron nanoparticles: A positive modulator of innate immune responses in strawberry plants against Botrytis cinerea. Process Biochemistry, 115, 128-145.

    Article  CAS  Google Scholar 

  25. Galvin, P., Thompson, D., Ryan, K. B., McCarthy, A., Moore, A. C., Burke, C. S., Dyson, M., MacCraith, B. D., Gun’ko, Y. K., Byrne, M. T., & Volkov, Y. (2012). Nanoparticle-based drug delivery: Case studies for cancer and cardiovascular applications. Cellular and Molecular Life Sciences, 69(3), 389-404.

    Article  CAS  PubMed  Google Scholar 

  26. Muthuvel, A., Jothibas, M., & Manoharan, C. (2020). Effect of chemically synthesis compared to biosynthesized ZnO-NPs using Solanum nigrum leaf extract and their photocatalytic antibacterial and in vitro antioxidant activity. Journal of Environmental Chemical Engineering, 8, 103705.

    Article  CAS  Google Scholar 

  27. Espitia, P. J. P., Soares, N. D. F. F., Coimbra, J. S. D. R., de Andrade, N. J., Cruz, R. S., & Medeiros, E. A. A. (2012). Zinc oxide nanoparticles: Synthesis, antimicrobial activity and food packaging applications. Food Bioprocess Technology, 5(5), 1447-1464.

    Article  CAS  Google Scholar 

  28. Paškevičius, Š, Starkevič, U., Misiūnas, A., Vitkauskienė, A., Gleba, Y., & Ražanskienė, A. (2017). Plant-expressed pyocins for control of Pseudomonas aeruginosa. PLoS One, 12(10), e0185782.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Schroth, M. N., Cho, J. J., Green, S. K., & Kominos, S. D. (2018). Epidemiology of Pseudomonas aeruginosa in agricultural areas. Journal of Medical Microbiology, 67(8), 1191-1201.

    Article  PubMed  Google Scholar 

  30. Schwarz-Linek, J., Arlt, J., Jepson, A., Dawson, A., Vissers, T., Miroli, D., & Poon, W. W. C. (2016). Escherichia coli as a model active colloid: A practical introduction. Colloids and Surfaces B: Biointerfaces, 137, 2-16.

    Article  CAS  PubMed  Google Scholar 

  31. Allocati, N., Masulli, M., Alexeyev, M. F., & Di Ilio, C. (2013). Escherichia coli in Europe: An overview. International Journal of Environmental Research, 10(12), 6235-6254.

    Google Scholar 

  32. Jin, T., Mohammad, M., Pullerits, R., & Ali, A. (2021). Bacteria and host interplay in staphylococcus aureus septic arthritis and sepsis. Pathogens, 10(2), 158.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lobo, R., Prabhu, K. S., Shirwaikar, A., & Shirwaikar, A. (2009). Curcuma zedoaria Rosc. (white turmeric): A review of its chemical, pharmacological and ethnomedicinal properties. Journal of Pharmacy and Pharmacology, 61(1), 13-21.

    Article  CAS  PubMed  Google Scholar 

  34. Gharge, S., Hiremath, S. I., Kagawad, P., Jivaje, K., Palled, M. S., & Suryawanshi, S. S. (2021). Curcuma zedoaria Rosc (Zingiberaceae): A review on its chemical, pharmacological and biological activities. Future Journal of Pharmaceutical Sciences, 7(1), 1-9.

    Article  Google Scholar 

  35. Jia, S., Shen, M., Zhang, F., & Xie, J. (2017). Recent advances in Momordica charantia: Functional components and biological activities. International Journal of Molecular Sciences, 18(12), 2555.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Tan, S. P., Kha, T. C., Parks, S. E., & Roach, P. D. (2016). Bitter melon (Momordica charantia L.) bioactive composition and health benefits: A review. Food Reviews International, 32(2), 181-202.

    Article  CAS  Google Scholar 

  37. Abdelbaky, A. S., & Diab, Y. M. (2021). Effect of various extraction methods and solvent types on yield phenolic and flavonoid content and antioxidant activity of Spathodea nilotica leaves. Egypt Journal of Chemistry, 64, 7483-7489.

    Google Scholar 

  38. Bauer, A. W., Kirby, M. M., Sherris, J. C., & Turck, M. (1966). Antibiotic susceptibility testing by a standardized single disk method. American Journal of Clinical Pathology, 45, 493-496.

    Article  CAS  PubMed  Google Scholar 

  39. Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 26(9-10), 1231-1237.

    Article  CAS  PubMed  Google Scholar 

  40. Park, H. R., Park, E., Rim, A. R., Jeon, K. I., Huang, J. H., & Lee, S. C. (2006). Antioxidant activity of extracts from Acanthopanax senticosus. African Journal Biotechnology, 5(23), 2388-2396.

    Google Scholar 

  41. Li, S., Shen, Y., Xie, A., Yu, X., Qiu, L., Zhang, L., & Zhang, Q. (2007). Green synthesis of silver nanoparticles using Capsicum annuum L. extract. Green Chemistry, 9(8), 852-858.

    Article  CAS  Google Scholar 

  42. Garibo, D., Borbón-Nuñez, H. A., de León, J. N. D., García Mendoza, E., Estrada, I., Toledano-Magaña, Y., Tiznado, H., Ovalle-Marroquin, M., Soto-Ramos, A. G., Blanco, A., & Rodríguez, J. A. (2020). Green synthesis of silver nanoparticles using Lysiloma acapulcensis exhibit high-antimicrobial activity. Scientific Reports, 10(1), 1-11.

    Article  Google Scholar 

  43. Yousaf, H., Mehmood, A., Ahmad, K. S., & Raffi, M. (2020). Green synthesis of silver nanoparticles and their applications as an alternative antibacterial and antioxidant agents. Materials Science and Engineering: C, 112, 110901.

    Article  CAS  PubMed  Google Scholar 

  44. Soares, A. M., Gonçalves, L. M., Ferreira, R. D., de Souza, J. M., Fangueiro, R., Alves, M. M., Carvalho, F. A., Mendes, A. N., & Cantanhêde, W. (2020). Immobilization of papain enzyme on a hybrid support containing zinc oxide nanoparticles and chitosan for clinical applications. Carbohydrate Polymers, 243, 116498.

    Article  CAS  PubMed  Google Scholar 

  45. Thi, T. U. D., Nguyen, T. T., Thi, Y. D., Thi, K. H. T., Phan, B. T., & Pham, K. N. (2020). Green synthesis of ZnO nanoparticles using orange fruit peel extract for antibacterial activities. RSC Advances, 10(40), 23899-23907.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Soto-Robles, C. A., Luque, P. A., Gómez-Gutiérrez, C. M., Nava, O., Vilchis-Nestor, A. R., Lugo-Medina, E., Ranjithkumar, R., & Castro-Beltrán, A. (2019). Study on the effect of the concentration of Hibiscus sabdariffa extract on the green synthesis of ZnO nanoparticles. Results in Physics, 15, 102807.

    Article  Google Scholar 

  47. Awwad, A. M., Amer, M. W., Salem, N. M., & Abdeen, A. O. (2020). Green synthesis of zinc oxide nanoparticles (ZnO-NPs) using Ailanthus altissima fruit extracts and antibacterial activity. Chemistry International, 6(3), 151-159.

    CAS  Google Scholar 

  48. Mydeen, S. S., Kumar, R. R., Kottaisamy, M., & Vasantha, V. S. (2020). Biosynthesis of ZnO nanoparticles through extract from Prosopis juliflora plant leaf: Antibacterial activities and a new approach by rust-induced photocatalysis. Journal of Saudi Chemical Society, 24(5), 393-406.

    Article  Google Scholar 

  49. Aldeen, T. S., Mohamed, H. E. A., & Maaza, M. (2022). ZnO nanoparticles prepared via a green synthesis approach: Physical properties, photocatalytic and antibacterial activity. Journal of Physics and Chemistry of Solids, 160, 110313.

    Article  CAS  Google Scholar 

  50. Vijayakumar, S., Vaseeharan, B., Malaikozhundan, B., & Shobiya, M. (2016). Laurus nobilis leaf extract mediated green synthesis of ZnO nanoparticles: Characterization and biomedical applications. Biomed Pharmaceutical, 84, 1213-1222.

    Article  CAS  Google Scholar 

  51. Vijayakumar, S., Arulmozhi, P., Kumar, N., Sakthivel, B., Kumar, S. P., & Praseetha, P. K. (2020). Acalypha fruticosa L. leaf extract mediated synthesis of ZnO nanoparticles: Characterization and antimicrobial activities. Materials Today: Proceedings, 23, 73-80.

    CAS  Google Scholar 

  52. Getie, S., Belay, A., Chandra Reddy, A. R., & Belay, Z. (2017). Synthesis and characterizations of zinc oxide nanoparticles for antibacterial applications. Journal of Nanomedicine & Nanotechnology, 8, 71-80.

    Google Scholar 

  53. Soren, S., Kumar, S., Mishra, S., Jena, P. K., Verma, S. K., & Parhi, P. (2018). Evaluation of antibacterial and antioxidant potential of the zinc oxide nanoparticles synthesized by aqueous and polyol method. Microbial Pathogenesis, 119, 145-151.

    Article  CAS  PubMed  Google Scholar 

  54. Agarwal, H., Menon, S., Kumar, S. V., & Rajeshkumar, S. (2018). Mechanistic study on antibacterial action of zinc oxide nanoparticles synthesized using green route. Chemico-Biological Interactions, 286, 60-70.

    Article  CAS  Google Scholar 

  55. Jayaseelan, C., Rahuman, A. A., Kirthi, A. V., Marimuthu, S., Santhoshkumar, T., Bagavan, A., & Rao, K. B. (2012). Novel microbial route to synthesize ZnO nanoparticles using Aeromonas hydrophila and their activity against pathogenic bacteria and fungi. Spectrochim. Acta Part A: Molecular and Biomolecular Spectroscopy, 90, 78-84.

    Article  CAS  Google Scholar 

  56. Mthana, M. S., Mthiyane, D. M. N., Onwudiwe, D. C., & Singh, M. (2022). Biosynthesis of ZnO nanoparticles using Capsicum chinense fruit extract and their in vitro cytotoxicity and antioxidant assay. Applied Science, 12, 4451. https://doi.org/10.3390/app12094451

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Mohsin Ihsan, Israr Ud Din, Khadija Alam, Iqbal Munir, Heba I. Mohamed, Fahimullah Khan: conceptualization, methodology, formal analysis, investigation, writing—original draft preparation, writing—review and editing.

Corresponding authors

Correspondence to Israr Ud Din or Heba I. Mohamed.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ihsan, M., Din, I.U., Alam, K. et al. Green Fabrication, Characterization of Zinc Oxide Nanoparticles Using Plant Extract of Momordica charantia and Curcuma zedoaria and Their Antibacterial and Antioxidant Activities. Appl Biochem Biotechnol 195, 3546–3565 (2023). https://doi.org/10.1007/s12010-022-04309-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-022-04309-5

Keywords

Navigation