Skip to main content
Log in

Optimization of Tumor Spheroid Preparation and Morphological Analysis for Drug Evaluation

  • Original Article
  • Published:
BioChip Journal Aims and scope Submit manuscript

Abstract

Due to its similarity to in vivo conditions, tumor spheroids are actively used in research areas, such as drug screening and cell–cell interactions. A substantial quantity of spheroids is crucial for obtaining dependable results in high-throughput screening. Conventional fabrication methods of spheroid have limitations in low yield and morphological variation. Droplet-based microfluidic system capable of mass-producing uniformed spheroids can overcome these limitations. In this study, we investigated the optimal culture conditions, which allows to researchers provide guidelines for producing spheroids with the desired diameter and quantity. Mass-produced spheroids were employed to analyze compaction, which is crucial for evaluating the remission effects of drugs, as well as the formation of a necrotic core, which induces a bias in the analysis of drug response and viability. The time point at which compaction is completed and the diameter begins to increase was measured using spheroids with diameters of both > 400 μm and < 400 μm, and spheroids do not proliferate a linear growth trend. Spheroid with diameters ranging from 73.4 ± 11.42 μm to 371 ± 5.11 μm was used to predict the formation of the necrotic core based on live cell counting, and diameter of 300–330 μm was mathematically calculated as the diameter where a necrotic core forms. Additionally, the use of artificial intelligence (AI) for high-throughput analysis is crucial for obtaining time-saving and reproducible data. We produced BT474 and MCF-7 spheroids with diameters of 100, 200, and 300 μm and obtained morphological indicators from an AI-based program to compare the differences in heterogeneous breast tumor spheroids. Through this study, we optimized the diameter of spheroids and the initiation timing for drug screening and emphasized the importance of AI-based morphological analysis in high-throughput screening.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. Imamura, Y., Mukohara, T., Shimono, Y., Funakoshi, Y., Chayahara, N., Toyoda, M., Kiyota, N., Takao, S., Kono, S., Nakatsura, T.: Comparison of 2D-and 3D-culture models as drug-testing platforms in breast cancer. Oncol. Rep. 33, 1837–1843 (2015)

    Article  CAS  PubMed  Google Scholar 

  2. Kapałczyńska, M., Kolenda, T., Przybyła, W., Zajączkowska, M., Teresiak, A., Filas, V., Ibbs, M., Bliźniak, R., Łuczewski, Ł, Lamperska, K.: 2D and 3D cell cultures–a comparison of different types of cancer cell cultures. Arch. Med. Sci. 14, 910–919 (2018)

    PubMed  Google Scholar 

  3. Choi, N.Y., Lee, M.-Y., Jeong, S.: Recent advances in 3D-cultured brain tissue models derived from human iPSCs. Biochip J. 16, 246–254 (2022)

    Article  CAS  Google Scholar 

  4. Ravi, M., Paramesh, V., Kaviya, S., Anuradha, E., Solomon, F.P.: 3D cell culture systems: advantages and applications. J. Cell. Physiol. 230, 16–26 (2015)

    Article  CAS  PubMed  Google Scholar 

  5. Białkowska, K., Komorowski, P., Bryszewska, M., Miłowska, K.: Spheroids as a type of three-dimensional cell cultures—examples of methods of preparation and the most important application. Int. J. Mol. Sci. 21, 6225 (2020)

    Article  PubMed  PubMed Central  Google Scholar 

  6. Kimlin, L.C., Casagrande, G., Virador, V.M.: In vitro three-dimensional (3D) models in cancer research: an update. Mol. Carcinog. 52, 167–182 (2013)

    Article  PubMed  Google Scholar 

  7. Yeon, J.H., Chung, S.H., Baek, C., Hwang, H., Min, J.: A simple pipetting-based method for encapsulating live cells into multi-layered hydrogel droplets. Biochip J. 12, 184–192 (2018)

    Article  CAS  Google Scholar 

  8. Kang, S.-M.: Recent advances in microfluidic-based microphysiological systems. Biochip J. 16, 13–26 (2022)

    Article  CAS  Google Scholar 

  9. Driver, R., Mishra, S.: Organ-on-a-chip technology: an in-depth review of recent advancements and future of whole body-on-chip. Biochip J. 17, 1–23 (2023)

    Article  CAS  Google Scholar 

  10. Jang, M., Kim, H.N.: From single-to multi-organ-on-a-chip system for studying metabolic diseases. Biochip J. (2023). https://doi.org/10.1007/s13206-023-00098-z

    Article  Google Scholar 

  11. Foty, R.: A simple hanging drop cell culture protocol for generation of 3D spheroids. JoVE J. Vis. Exp. (2011). https://doi.org/10.3791/2720-v

    Article  PubMed  Google Scholar 

  12. Kloß, D., Fischer, M., Rothermel, A., Simon, J.C., Robitzki, A.A.: Drug testing on 3D in vitro tissues trapped on a microcavity chip. Lab Chip 8, 879–884 (2008)

    Article  PubMed  Google Scholar 

  13. Jung, Y.H., Park, K., Kim, M., Oh, H., Choi, D.-H., Ahn, J., Lee, S.-B., Na, K., Min, B.S., Kim, J.-A.: Development of an extracellular matrix plate for drug screening using patient-derived tumor organoids. Biochip J. (2023). https://doi.org/10.1007/s13206-023-00099-y

    Article  PubMed  PubMed Central  Google Scholar 

  14. Kochanek, S.J., Close, D.A., Johnston, P.A.: High content screening characterization of head and neck squamous cell carcinoma multicellular tumor spheroid cultures generated in 384-well ultra-low attachment plates to screen for better cancer drug leads. Assay Drug Dev. Technol. 17, 17–36 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kwak, B., Lee, Y., Lee, J., Lee, S., Lim, J.: Mass fabrication of uniform sized 3D tumor spheroid using high-throughput microfluidic system. J. Control. Release 275, 201–207 (2018)

    Article  CAS  PubMed  Google Scholar 

  16. Park, S.Y., Hong, H.J., Lee, H.J.: Fabrication of cell spheroids for 3D cell culture and biomedical applications. Biochip J. 17, 24–43 (2023)

    Article  CAS  Google Scholar 

  17. Moriconi, C., Palmieri, V., Di Santo, R., Tornillo, G., Papi, M., Pilkington, G., De Spirito, M., Gumbleton, M.: INSIDIA: a FIJI macro delivering high-throughput and high-content spheroid invasion analysis. Biotechnol. J. 12, 1700140 (2017)

    Article  Google Scholar 

  18. Zanoni, M., Piccinini, F., Arienti, C., Zamagni, A., Santi, S., Polico, R., Bevilacqua, A., Tesei, A.: 3D tumor spheroid models for in vitro therapeutic screening: a systematic approach to enhance the biological relevance of data obtained. Sci. Rep. 6, 19103 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bédard, P., Gauvin, S., Ferland, K., Caneparo, C., Pellerin, È., Chabaud, S., Bolduc, S.: Innovative human three-dimensional tissue-engineered models as an alternative to animal testing. Bioengineering 7, 115 (2020)

    Article  PubMed  PubMed Central  Google Scholar 

  20. Piccinini, F.: AnaSP: a software suite for automatic image analysis of multicellular spheroids. Comput. Methods Programs Biomed. 119, 43–52 (2015)

    Article  PubMed  Google Scholar 

  21. Piccinini, F., Peirsman, A., Stellato, M., Pyun, J.-C., Tumedei, M.M., Tazzari, M., Wever, O.D., Tesei, A., Martinelli, G., Castellani, G.: Deep learning-based tool for morphotypic analysis of 3D multicellular spheroids. J. Mech. Med. Biol. 23, 2340034 (2023)

    Article  Google Scholar 

  22. Piccinini, F., Tesei, A., Arienti, C., Bevilacqua, A.: Cancer multicellular spheroids: volume assessment from a single 2D projection. Comput. Methods Programs Biomed. 118, 95–106 (2015)

    Article  PubMed  Google Scholar 

  23. Mishra, A., Kai, R., Atkuru, S., Dai, Y., Piccinini, F., Preshaw, P.M., Sriram, G.: Fluid flow-induced modulation of viability and osteodifferentiation of periodontal ligament stem cell spheroids-on-chip. Biomater. Sci. 11, 7432–7444 (2023)

    Article  CAS  PubMed  Google Scholar 

  24. Diosdi, A., Hirling, D., Kovacs, M., Toth, T., Harmati, M., Koos, K., Buzas, K., Piccinini, F., Horvath, P.: Cell lines and clearing approaches: a single-cell level 3D light-sheet fluorescence microscopy dataset of multicellular spheroids. Data Brief 36, 107090 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Koike, C., McKee, T., Pluen, A., Ramanujan, S., Burton, K., Munn, L., Boucher, Y., Jain, R.: Solid stress facilitates spheroid formation: potential involvement of hyaluronan. Br. J. Cancer 86, 947–953 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Pinto, B., Henriques, A.C., Silva, P.M., Bousbaa, H.: Three-dimensional spheroids as in vitro preclinical models for cancer research. Pharmaceutics 12, 1186 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Nath, S., Devi, G.R.: Three-dimensional culture systems in cancer research: focus on tumor spheroid model. Pharmacol. Ther. 163, 94–108 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lin, R.Z., Chang, H.Y.: Recent advances in three-dimensional multicellular spheroid culture for biomedical research. Biotechnol. J. Healthc. Nutr. Technol. 3, 1172–1184 (2008)

    CAS  Google Scholar 

  29. Lin, R.-Z., Chou, L.-F., Chien, C.-C.M., Chang, H.-Y.: Dynamic analysis of hepatoma spheroid formation: roles of E-cadherin and β1-integrin. Cell Tissue Res. 324, 411–422 (2006)

    Article  CAS  PubMed  Google Scholar 

  30. Ferrante, A., Rainaldi, G., Indovina, P., Indovina, P.L., Santini, M.T.: Increased cell compaction can augment the resistance of HT-29 human colon adenocarcinoma spheroids to ionizing radiation. Int. J. Oncol. 28, 111–118 (2006)

    CAS  PubMed  Google Scholar 

  31. Däster, S., Amatruda, N., Calabrese, D., Ivanek, R., Turrini, E., Droeser, R.A., Zajac, P., Fimognari, C., Spagnoli, G.C., Iezzi, G.: Induction of hypoxia and necrosis in multicellular tumor spheroids is associated with resistance to chemotherapy treatment. Oncotarget 8, 1725 (2017)

    Article  PubMed  Google Scholar 

  32. Kim, C.: Droplet-based microfluidics for making uniform-sized cellular spheroids in alginate beads with the regulation of encapsulated cell number. Biochip J. 9, 105–113 (2015)

    Article  CAS  Google Scholar 

  33. Aguilar Cosme, J.R., Gagui, D.C., Bryant, H.E., Claeyssens, F.: Morphological response in cancer spheroids for screening photodynamic therapy parameters. Front. Mol. Biosci. 8, 784962 (2021)

    Article  PubMed  PubMed Central  Google Scholar 

  34. Shirai, K., Kato, H., Imai, Y., Shibuta, M., Kanie, K., Kato, R.: The importance of scoring recognition fitness in spheroid morphological analysis for robust label-free quality evaluation. Regen. Ther. 14, 205–214 (2020)

    Article  PubMed  PubMed Central  Google Scholar 

  35. Zhu, J., Thompson, C.B.: Metabolic regulation of cell growth and proliferation. Nat. Rev. Mol. Cell Biol. 20, 436–450 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Han, S.J., Kwon, S., Kim, K.S.: Challenges of applying multicellular tumor spheroids in preclinical phase. Cancer Cell Int. 21, 1–19 (2021)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MEST) (NRF-2022R1A2C2003103, NRF-2021R1A2C3011254, and NRF-2020R1A5A1018052). F.P., and G.C. acknowledge support from the MAECI Science and Technology Cooperation Italy–South Korea Grant Years 2023–2025 by the Italian Ministry of Foreign Affairs and International Cooperation (CUP project: J53C23000300003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bongseop Kwak.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 225 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, J., Kim, Y., Lim, J. et al. Optimization of Tumor Spheroid Preparation and Morphological Analysis for Drug Evaluation. BioChip J 18, 160–169 (2024). https://doi.org/10.1007/s13206-024-00143-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13206-024-00143-5

Keywords

Navigation