Skip to main content
Log in

Growth and characterization of multicellular tumor spheroids of human bladder carcinoma origin

  • Published:
In Vitro Cellular & Developmental Biology Aims and scope Submit manuscript

Summary

We have examined the MGH-U1 human bladder carcinoma cell line and 12 primary bladder carcinoma biopsies for their ability to form spheroids in suspension culture and in multiwell dishes. MGH-U1 cells formed tightly packed spheroids with a necrotic center and viable rim whereas three sublines formed loose aggregates only. Spheroids formed from as few as 100 MGU-U1 cells placed into multiwells. MGH-U1 cells derived from spheroids formed new spheroids more rapidly and consistently than cells derived from monolayer culture. Spheroid diameter increased at a rapid rate of ∼100 μm/d in multiwell dishes, and necrosis occurred only in spheroids of diameter >1 mm. Spheroids placed in spinner culture at a higher concentration (∼1.5 spheroids/ml) grew more slowly and developed necrosis at smaller diameters. The width of the viable rim of spheroids grown in spinner culture was maintained at ∼190 μm over a wide range of spheroid diameters (400 to 1000 μm). Sequential trypsinization of spheroids, which stripped layers of cells from the spheroids, demonstrated no difference in the plating efficiency of cells derived from varying depths into the spheroid. Only one of the 12 primary bladder biopsy specimens demonstrated an ability to form spheroids. This biopsy, designated HB-10, formed spheroids that grew linearly over 40 d, formed colonies in methylcellulose culture and grew as xenografts in immune-deprived mice. These studies characterize the MGH-U1 spheroids that are useful in vitro models to study the effects of various treatments for solid tumors and demonstrate the limited capacity of cells from primary human bladder biopsies to form spheroids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barone, R. M.; Calabro-Jones, P.; Thomas, T. N.; Sharp, T. R., et al. Surgical adjuvant therapy in colon carcinoma: A human tumor spheroid model for evaluating radiation sensitizing agents. Cancer 47:2349–2357; 1981.

    Article  PubMed  CAS  Google Scholar 

  2. Burton, A. C. Rate of growth of solid tumours as a problem of diffusion. Growth 30:157–176; 1966.

    PubMed  CAS  Google Scholar 

  3. Durand, R. E.; Sutherland, R. M. Effects of intercellular contact on repair of radiation damage. Exp. Cell Res. 71:75–80; 1972.

    Article  PubMed  CAS  Google Scholar 

  4. Durand, R. E. Cell cycle kinetics in an in vitro tumor model. Cell Tissue Kinet. 9:403–412; 1976.

    PubMed  CAS  Google Scholar 

  5. Durand, R. E. Use of Hoechst 33342 for cell selection from multicell systems. J. Histochem. Cytochem. 30:117–122; 1982.

    PubMed  CAS  Google Scholar 

  6. Erlichman, C.; Vidgen, D. Cytotoxicity of adriamycin in MGH-U1 cells grown as monolayer cultures, spheroids, and xenografts in immune-deprived mice. Cancer Res. 44:5469–5375; 1984.

    Google Scholar 

  7. Franko, A. J.; Sutherland, R. M. Oxygen diffusion distance and development of necrosis in multicell spheroids. Radiat. Res. 79:439–453; 1979.

    Article  PubMed  CAS  Google Scholar 

  8. Freyer, J. P.; Sutherland, R. M. Selective dissociation and characterization of cells from different regions of multicell tumor spheroids. Cancer Res. 40:3956–3965; 1980.

    PubMed  CAS  Google Scholar 

  9. Freyer, J. P.; Sutherland, R. M. Effects of oxygen and glucose on spheroid growth. Strahlentherapie 160:56;1984.

    Google Scholar 

  10. Giesbrecht, J. L.; Wilson, W. R.; Hill, R. P. Radiobiological studies of cells in multicellular spheroids using a sequential trypsinization technique. Radiat. Res. 86:368–386; 1981.

    Article  PubMed  CAS  Google Scholar 

  11. Haji-Karim, M.; Carlsson, J. Proliferation and viability in cellular spheroids of human origin. Cancer Res. 38:1457–1464; 1978.

    PubMed  CAS  Google Scholar 

  12. Hastings, R. J.; Franks, L. M. Chromosome pattern, growth in agar and tumorgenicity in nude mice of four human bladder carcinoma cell lines. Int. J. Cancer 27:15–21; 1981.

    Article  PubMed  CAS  Google Scholar 

  13. Kato, T.; Irwin, R. J., Jr.; Prout, G. R., Jr. Cell cycles in two cell lines of human bladder carcinoma. Tohoku J. Exp. Med. 121:157–164; 1977.

    Article  PubMed  CAS  Google Scholar 

  14. Kato, T.; Ishikawa, K.; Nemoto, R., et al. Morphological characterization of two established cell lines, T24 and MGH-U1, derived from human urinary bladder carcinoma. Tohoku J. Exp. Med. 124:339–349; 1978.

    PubMed  CAS  Google Scholar 

  15. Kovnat, A.; Armitage, M.; Tannock, I. F. Xenografts of human bladder cancer in immune-deprived mice. Cancer Res. 42:3696–3703; 1982.

    PubMed  CAS  Google Scholar 

  16. Kovnat, A.; Buick, R. N.; Connolly, J. G., et al. Comparison of growth of human bladder cancer in tissue culture or as xenografts with clinical and pathological characteristics. Cancer Res. 44:2530–2533; 1984.

    PubMed  CAS  Google Scholar 

  17. Landry, J.; Freyer, J. P.; Sutherland, R. M. Shedding of mitotic cells from the surface of multicell spheroids during growth. J. Cell Physiol. 106:23–32; 1981.

    Article  PubMed  CAS  Google Scholar 

  18. Li, C. K. N. The glucose distribution in 9L rat brain multicell tumor spheroids and its effect on cell necrosis. Cancer 50:2066–2073; 1982.

    Article  PubMed  CAS  Google Scholar 

  19. Mueller-Klieser, W.; Freyer, J. P.; Sutherland, R. M. Influence of O2 and glucose supply conditions on O2 consumption and O2 diffusion in multicellular tumor spheroids. Strahlentherapie 160:57;1984.

    Google Scholar 

  20. O'Toole, C. M.; Povey, S.; Hephurn, P., et al. Identity of some human bladder cancer cell lines. Nature 301:429–430; 1983.

    Article  PubMed  Google Scholar 

  21. Stanners, C. P.; Eliceiri, G. L.; Green, H. Two types of ribosome in mouse-hamster hybrid cells. Nature 230:52–54; 1971.

    CAS  Google Scholar 

  22. Steel, G. G.; Courtenay, V. D.; Rostom, A. Y. Improved immune-suppression techniques for the xenografting of human tumors. Br. J. Cancer 37:224–230; 1978.

    PubMed  CAS  Google Scholar 

  23. Sutherland, R. M.; McCredie, J. A.; Inch, W. R. Growth of multicell spheroids in tissue culture as a model of nodular carcinomas. INCI 46:113–120; 1971.

    CAS  Google Scholar 

  24. Sutherland, R. M.; Durand, R. E. Hypoxic cells in an in vitro tumor model. Int. J. Radiat. Biol. 23:235–246; 1973.

    Article  CAS  Google Scholar 

  25. Yuhas, J. M.; Li, A. P.; Martinez, A. O., et al. A simplified method for production and growth of multicellular tumor spheroids. Cancer Res. 37:3639–3643; 1977.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported in part by a grant from the National Cancer Institute of Canada and by grant CA29526 NCI through the National Bladder Cancer Project, U.S.A.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Erlichman, C., Tannock, I.F. Growth and characterization of multicellular tumor spheroids of human bladder carcinoma origin. In Vitro Cell Dev Biol 22, 449–456 (1986). https://doi.org/10.1007/BF02623445

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02623445

Key words

Navigation