Skip to main content

Advertisement

Log in

Microfluidics engineering towards personalized oncology—a review

  • Reviews
  • Published:
In vitro models Aims and scope Submit manuscript

Abstract

Identifying and monitoring the presence of cancer metastasis and highlighting inter-and intratumoral heterogeneity is a central tenet of targeted precision oncology medicine (POM). This process of relocation of cancer cells is often referred to as the missing link between a tumor and metastasis. In recent years, microfluidic technologies have been developed to isolate a plethora of different biomarkers, such as circulating tumor cells (CTCs), tumor-derived vesicles (exosomes), or cell/free nucleic acids and proteins directly from patients’ blood samples. With the advent of microfluidic developments, minimally invasive and quantitative assessment of different tumors is becoming a reality. This short review article will touch briefly on how microfluidics at early-stage achievements can be combined or developed with the active vs passive microfluidic technologies, depending on whether they utilize external fields and forces (active) or just microchannel geometry and inherent fluid forces (passive) from the market to precision oncology research and our future prospectives in terms of the emergence of ultralow cost and rapid prototyping of microfluidics in precision oncology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Sackmann EK, Fulton AL, Beebe DJ. The present and future role of microfluidics in biomedical research. Nat. 2014a;507(7491):181–9.

    Article  CAS  Google Scholar 

  2. Soitu C, Feuerborn A, Tan AN, Walker H, Walsh PA, Castrejón-Pita AA, et al. Microfluidic chambers using fluid walls for cell biology. Proc Natl Acad Sci U S A. 2018;115(26):E5926–E33.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Zhong Q, Ding H, Gao B, He Z, Gu Z. Advances of microfluidics in biomedical engineering. Adv Mater Technol. 2019;4(6):1800663.

    Article  Google Scholar 

  4. Webster A, Greenman J, Haswell SJ. Development of microfluidic devices for biomedical and clinical application. J Chem Technol Biotechnol. 2011;86(1):10–7.

    Article  CAS  Google Scholar 

  5. Chang K, Creighton CJ, Davis C, Donehower L, Drummond J, Wheeler D, et al. The cancer genome atlas pan-cancer analysis project. Nat Genet. 2013;45(10):1113–20.

    Article  CAS  Google Scholar 

  6. Hayes B, Murphy C, Crawley A, O'Kennedy R. Developments in point-of-care diagnostic technology for cancer detection. Diagnostics. 2018;8(2):39.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Kulasinghe A, Wu H, Punyadeera C, Warkiani ME. The use of microfluidic technology for cancer applications and liquid biopsy. Micromachines. 2018a;9(8):397.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Vaidyanathan R, Soon RH, Zhang P, Jiang K, Lim CT. Cancer diagnosis: from tumor to liquid biopsy and beyond. Lab Chip. 2019;19(1):11–34.

    CAS  Google Scholar 

  9. Chen F, Zhang Y, Varambally S, Creighton CJ. Molecular correlates of metastasis by systematic pan-cancer analysis across the cancer genome atlas. Mol Cancer Res. 2019;17(2):476–87.

    Article  CAS  PubMed  Google Scholar 

  10. Hamburg MA, Collins FS. The path to personalized medicine. N Engl J Med. 2010;363(4):301–4.

    Article  CAS  PubMed  Google Scholar 

  11. Konecny G. The path to personalized medicine in women cancers: challenges and recent advances. Curr Opin Obstet Gynecol. 2014;27:45–7.

    Article  Google Scholar 

  12. Meyer JM, Ginsburg GS. The path to personalized medicine. Curr Opin Chem Biol. 2002;6(4):434–8.

    Article  CAS  PubMed  Google Scholar 

  13. Roth SM. Functional genomics and the path to personalized medicine. Exerc Sport Sci Rev. 2008;36(2):49–50.

    Article  PubMed  Google Scholar 

  14. Tremblay J, Hamet P. Role of genomics on the path to personalized medicine. Metab Clin Exp. 2013;62(Suppl 1):S2–5.

    Article  CAS  PubMed  Google Scholar 

  15. Hussain T, Nguyen QT. Molecular imaging for cancer diagnosis and surgery. Adv Drug Deliv Rev. 2014;66:90–100.

    Article  CAS  PubMed  Google Scholar 

  16. Seyfried TN, Huysentruyt LC. On the origin of cancer metastasis. Crit Rev Oncog. 2013;18(1-2):43–73.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Lee J-K, Wang J, Sa JK, Ladewig E, Lee H-O, Lee I-H, et al. Spatiotemporal genomic architecture informs precision oncology in glioblastoma. Nat Genet. 2017;49(4):594–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Huang X, Tang J, Hu L, Bian R, Liu M, Cao W, et al. Arrayed microfluidic chip for detection of circulating tumor cells and evaluation of drug potency. Anal Biochem. 2019;564:64–71.

    Article  PubMed  Google Scholar 

  19. Kühlbach C, da Luz S, Baganz F, Hass VC, Mueller MM. A Microfluidic system for the investigation of tumor cell extravasation. Bioeng. 2018;5(2):40.

    Google Scholar 

  20. Ma Y-HV, Middleton K, You L, Sun Y. A review of microfluidic approaches for investigating cancer extravasation during metastasis. Microsyst Nanoeng. 2018a;4(1):17104.

    Article  CAS  Google Scholar 

  21. Bellosillo B, Montagut C. High-accuracy liquid biopsies. Nat Med. 2019;25(12):1820–1.

    Article  CAS  PubMed  Google Scholar 

  22. Mattox AK, Bettegowda C, Zhou S. Applications of liquid biopsies for cancer. Sci Transl Med. 2019;11:507.

    Article  Google Scholar 

  23. Ayuso JM, Virumbrales-Muñoz M, Lang JM, Beebe DJ. A role for microfluidic systems in precision medicine. Nat Commun. 2022;13(1):3086.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Xie Y, Xu X, Wang J, Lin J, Ren Y, Wu A. Latest advances and perspectives of liquid biopsy for cancer diagnostics driven by microfluidic on-chip assays. Lab Chip. 2023;23:2922–41.

    Article  CAS  PubMed  Google Scholar 

  25. Campos CDM, Jackson JM, Witek MA, Soper SA. Molecular profiling of liquid biopsy samples for precision medicine. Cancer J. 2018;24(2):93–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Liotta L, Petricoin E. Molecular profiling of human cancer. Nat Rev Genet. 2000;1(1):48–56.

    Article  CAS  PubMed  Google Scholar 

  27. Leslie M. Advancing cancer screening with liquid biopsies. Cancer Discov. 2018;8(3):256.

    Article  Google Scholar 

  28. Barlebo Ahlborn L, Østrup O. Toward liquid biopsies in cancer treatment: application of circulating tumor DNA. APMIS: acta pathologica, microbiologica, et immunologica Scandinavica. 2019;127(5):329–36.

    Article  PubMed  Google Scholar 

  29. Campos-Fernández E, Barcelos LS, de Souza AG, Goulart LR, Alonso-Goulart V. Research landscape of liquid biopsies in prostate cancer. Am J Cancer Res. 2019;9(7):1309–28.

    PubMed  PubMed Central  Google Scholar 

  30. Nolan J, Pearce OMT, Screen HRC, Knight MM, Verbruggen SW. Organ-on-a-chip and microfluidic platforms for oncology in the UK. Cancers. 2023;15(3):635.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sun Y, Haglund TA, Rogers AJ, Ghanim AF, Sethu P. Review: microfluidics technologies for blood-based cancer liquid biopsies. Anal Chim Acta. 2018a;1012:10–29.

    Article  CAS  PubMed  Google Scholar 

  32. Iliescu FS, Poenar DP, Yu F. Recent advances in microfluidic methods in cancer liquid biopsy. Biomicrofluidics. 2019a;13(4):041503.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Casavant BP, Mosher R, Warrick JW, Maccoux LJ, Berry SMF, Becker JT, et al. A negative selection methodology using a microfluidic platform for the isolation and enumeration of circulating tumor cells. Methods. 2013;64(2):137–43.

    Article  CAS  PubMed  Google Scholar 

  34. Lee Y, Guan G, Bhagat AA. ClearCell® FX, a label-free microfluidics technology for enrichment of viable circulating tumor cells. Cytometry Part A. 2018;93(12):1251–4.

    Article  Google Scholar 

  35. Cheng X, Zhang L, Chen Y, Qing C. Circulating cell-free DNA and circulating tumor cells, the “liquid biopsies” in ovarian cancer. J Ovarian Res. 2017;10(1):1–10.

    Article  Google Scholar 

  36. Ghazani AA, McDermott S, Pectasides M, Sebas M, Mino-Kenudson M, Lee H, et al. Comparison of select cancer biomarkers in human circulating and bulk tumor cells using magnetic nanoparticles and a miniaturized micro-NMR system. Nanomed. 2013;9(7):1009–17.

    Article  CAS  Google Scholar 

  37. Heitzer E, Perakis S, Geigl JB, Speicher MR. The potential of liquid biopsies for the early detection of cancer. NPJ Precis Oncol. 2017;1(1):1–9.

    Google Scholar 

  38. Lim SB, Di Lee W, Vasudevan J, Lim W-T, Lim CT. Liquid biopsy: one cell at a time. NPJ Precis Oncol. 2019;3(1):1–9.

    Google Scholar 

  39. Mari R, Mamessier E, Lambaudie E, Provansal M, Birnbaum D, Bertucci F, et al. Liquid biopsies for ovarian carcinoma: how blood tests may improve the clinical management of a deadly disease. Cancers. 2019;11(6):774.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. O'Shannessy DJ, Davis DW, Anderes K, Somers EB. Isolation of circulating tumor cells from multiple epithelial cancers with ApoStream® for detecting (or monitoring) the expression of folate receptor alpha. Biomark Insights. 2016;11:BMI. S35075.

    Article  Google Scholar 

  41. Yu X, Wang B, Zhang N, Yin C, Chen H, Zhang L, et al. Capture and release of cancer cells by combining on-chip purification and off-chip enzymatic treatment. ACS Appl Mater Interfaces. 2015;7(43):24001–7.

    Article  CAS  PubMed  Google Scholar 

  42. Zhu J, Strickler JH. Clinical applications of liquid biopsies in gastrointestinal oncology. J Gastrointest Oncol. 2016;7(5):675.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Bankó P, Lee SY, Nagygyörgy V, Zrínyi M, Chae CH, Cho DH, et al. Technologies for circulating tumor cell separation from whole blood. J Hematol Oncol. 2019;12(1):1–20.

    Article  Google Scholar 

  44. Chen F, Wang S, Fang Y, Zheng L, Zhi X, Cheng B, et al. Feasibility of a novel one-stop ISET device to capture CTCs and its clinical application. Oncotarget. 2017;8(2):3029.

    Article  PubMed  Google Scholar 

  45. Chen W, Allen SG, Reka AK, Qian W, Han S, Zhao J, et al. Nanoroughened adhesion-based capture of circulating tumor cells with heterogeneous expression and metastatic characteristics. BMC Cancer. 2016;16(1):1–12.

    Article  CAS  Google Scholar 

  46. Fan X, Jia C, Yang J, Li G, Mao H, Jin Q, et al. A microfluidic chip integrated with a high-density PDMS-based microfiltration membrane for rapid isolation and detection of circulating tumor cells. Biosens Bioelectron. 2015;71:380–6.

    Article  CAS  PubMed  Google Scholar 

  47. Gascoyne PR, Noshari J, Anderson TJ, Becker FF. Isolation of rare cells from cell mixtures by dielectrophoresis. Electrophor. 2009;30(8):1388–98.

    Article  CAS  Google Scholar 

  48. Khetani S, Mohammadi M, Nezhad AS. Filter-based isolation, enrichment, and characterization of circulating tumor cells. Biotechnol Bioeng. 2018;115(10):2504–29.

    Article  CAS  PubMed  Google Scholar 

  49. Shim S, Stemke-Hale K, Noshari J, Becker FF, Gascoyne PR. Dielectrophoresis has broad applicability to marker-free isolation of tumor cells from blood by microfluidic systems. Biomicrofluidics. 2013;7(1):011808.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Theil G, Fischer K, Weber E, Medek R, Hoda R, Lücke K, et al. The use of a new cellcollector to isolate circulating tumor cells from the blood of patients with different stages of prostate cancer and clinical outcomes-a proof-of-concept study. PLoS One. 2016;11(8):e0158354.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Todenhöfer T, Park ES, Duffy S, Deng X, Jin C, Abdi H, et al. Microfluidic enrichment of circulating tumor cells in patients with clinically localized prostate cancer. In: Urologic Oncology: Seminars and Original Investigations, vol. 34. Elsevier; 2016. p. 483-e9.

    Google Scholar 

  52. Hao S-J, Wan Y, Xia Y-Q, Zou X, Zheng S-Y. Size-based separation methods of circulating tumor cells. Adv Drug Deliv Rev. 2018;125:3–20.

    Article  CAS  PubMed  Google Scholar 

  53. Low WS, Wan Abas WAB. Benchtop technologies for circulating tumor cells separation based on biophysical properties. Biomed Res Int. 2015;2015:1–22.

    Google Scholar 

  54. Leone K, Poggiana C, Zamarchi R. The interplay between circulating tumor cells and the immune system: from immune escape to cancer immunotherapy. Diagnostics. 2018;8(3):59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Murlidhar V, Rivera-Báez L, Nagrath S. Affinity versus label-free isolation of circulating tumor cells: who wins? Small. 2016;12(33):4450–63.

    Article  CAS  PubMed  Google Scholar 

  56. Sharma S, Zhuang R, Long M, Pavlovic M, Kang Y, Ilyas A, et al. Circulating tumor cell isolation, culture, and downstream molecular analysis. Biotechnol Adv. 2018;36(4):1063–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Masuda T, Niimi M, Nakanishi H, Yamanishi Y, Arai F. Cancer cell separator using size-dependent filtration in microfluidic chip. Sens Actuators B: Chem. 2013;185:245–51.

    Article  CAS  Google Scholar 

  58. Huang T, Jia C-P, Sun W-J, Wang W-T, Zhang H-L, Cong H, et al. Highly sensitive enumeration of circulating tumor cells in lung cancer patients using a size-based filtration microfluidic chip. Biosens Bioelectron. 2014;51:213–8.

    Article  CAS  PubMed  Google Scholar 

  59. Lin E, Rivera-Báez L, Fouladdel S, Yoon HJ, Guthrie S, Wieger J, et al. High-throughput microfluidic labyrinth for the label-free isolation of circulating tumor cells. Cell Syst. 2017;5(3):295–304. e4.

    Article  CAS  PubMed  Google Scholar 

  60. Aghaamoo M, Aghilinejad A, Chen X, Xu J. On the design of deterministic dielectrophoresis for continuous separation of circulating tumor cells from peripheral blood cells. Electrophor. 2019;40(10):1486–93.

    Article  CAS  Google Scholar 

  61. Gascoyne PR, Shim S. Isolation of circulating tumor cells by dielectrophoresis. Cancers. 2014;6(1):545–79.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Lee G-B, Wu H-C, Yang P-F, Mai JD. Optically induced dielectropheresis sorting with automated medium exchange in an integrated optofluidic device resulting in higher cell viability. Lab Chip. 2014;14(15):2837–43.

    Article  CAS  PubMed  Google Scholar 

  63. van der Toom EE, Verdone JE, Gorin MA, Pienta KJ. Technical challenges in the isolation and analysis of circulating tumor cells. Oncotarget. 2016;7(38):62754.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Shim S, Gascoyne P, Noshari J, Stemke HK. Dynamic physical properties of dissociated tumor cells revealed by dielectrophoretic field-flow fractionation. Integr Biol. 2011;3(8):850–62.

    Article  CAS  Google Scholar 

  65. Gupta V, Jafferji I, Garza M, Melnikova VO, Hasegawa DK, Pethig R, et al. ApoStream™, a new dielectrophoretic device for antibody independent isolation and recovery of viable cancer cells from blood. Biomicrofluidics. 2012a;6(2):024133.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Tellez-Gabriel M, Cochonneau D, Cadé M, Jubelin C, Heymann M-F, Heymann D. Circulating tumor cell-derived pre-clinical models for personalized medicine. Cancers. 2018;11(1):19.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Farace F, Massard C, Vimond N, Drusch F, Jacques N, Billiot F, et al. A direct comparison of CellSearch and ISET for circulating tumour-cell detection in patients with metastatic carcinomas. Br J Cancer. 2011;105(6):847–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Dizdar L, Fluegen G, van Dalum G, Honisch E, Neves RP, Niederacher D, et al. Detection of circulating tumor cells in colorectal cancer patients using the GILUPI CellCollector: results from a prospective, single-center study. Mol Oncol. 2019;13(7):1548–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Shashni B, Ariyasu S, Takeda R, Suzuki T, Shiina S, Akimoto K, et al. Size-based differentiation of cancer and normal cells by a particle size analyzer assisted by a cell-recognition PC software. Biol Pharm Bull. 2018;41(4):487–503.

    Article  CAS  PubMed  Google Scholar 

  70. Manukyan G, Mikulkova Z, Turcsanyi P, Savara J, Trajerová M, Kubova Z, et al. Towards a better characterisation of leukemic cells in chronic lymphocytic leukaemia: cell-size heterogeneity reflects their activation status and migratory abilities. Cancers. 2021;13(19):4922.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Nakamura M, Ono D, Sugita S. Mechanophenotyping of B16 melanoma cell variants for the assessment of the efficacy of (-)-epigallocatechin gallate treatment using a tapered microfluidic device. Micromachines. 2019;10(3):207.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Lange JR, Steinwachs J, Kolb T, Lautscham LA, Harder I, Whyte G, et al. Microconstriction arrays for high-throughput quantitative measurements of cell mechanical properties. Biophys J. 2015;109(1):26–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Nath B, Raza A, Sethi V, Dalal A, Ghosh SS, Biswas G. Understanding flow dynamics, viability and metastatic potency of cervical cancer (HeLa) cells through constricted microchannel. Sci Rep. 2018;8(1):17357.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Jiang RD, Shen H, Piao YJ. The morphometrical analysis on the ultrastructure of A549 cells. Rom J Morphol Embryol. 2010;51(4):663–7.

    PubMed  Google Scholar 

  75. Sato Y, Fu Y, Liu H, Lee MY, Shaw MH. Tumor-immune profiling of CT-26 and Colon 26 syngeneic mouse models reveals mechanism of anti-PD-1 response. BMC Cancer. 2021;21(1):1222.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Fumarola C, La Monica S, Alfieri RR, Borra E, Guidotti GG. Cell size reduction induced by inhibition of the mTOR/S6K-signaling pathway protects Jurkat cells from apoptosis. Cell Death Differ. 2005;12(10):1344–57.

    Article  CAS  PubMed  Google Scholar 

  77. Lin HP, Chang JY, Lin SR, Lee MH, Huang SS, Hsu LJ, et al. Identification of an in vivo MEK/WOX1 complex as a master switch for apoptosis in T cell leukemia. Genes Cancer. 2011;2(5):550–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Wojtowicz W, Wróbel A, Pyziak K, Tarkowski R, Balcerzak A, Bębenek M, et al. Evaluation of MDA-MB-468 cell culture media analysis in predicting triple-negative breast cancer patient sera metabolic profiles. Metab. 2020;10(5):173.

    CAS  Google Scholar 

  79. Manrique N. Modulation of apoptosis in breast cancer cells MDA-MB-157, 93A and 93B by aqueous extract of Chinese medical herb Scutellaria barbata. In: Honors Theses. Andrews University; 2021. p. 253.

    Google Scholar 

  80. Huot JR, Pin F, Essex AL, Bonetto A. MC38 tumors induce musculoskeletal defects in colorectal cancer. Int J Mol Sci. 2021;22(3):1486.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Nagrath S, Sequist LV, Maheswaran S, Bell DW, Irimia D, Ulkus L, et al. Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nat. 2007;450(7173):1235–9.

    Article  CAS  Google Scholar 

  82. Jan YJ, Chen J-F, Zhu Y, Lu Y-T, Chen SH, Chung H, et al. NanoVelcro rare-cell assays for detection and characterization of circulating tumor cells. Adv Drug Deliv Rev. 2018;125:78–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Sheng W, Ogunwobi OO, Chen T, Zhang J, George TJ, Liu C, et al. Capture, release and culture of circulating tumor cells from pancreatic cancer patients using an enhanced mixing chip. Lab Chip. 2014;14(1):89–98.

    Article  CAS  PubMed  Google Scholar 

  84. Gao W, Huang T, Yuan H, Yang J, Jin Q, Jia C, et al. Highly sensitive detection and mutational analysis of lung cancer circulating tumor cells using integrated combined immunomagnetic beads with a droplet digital PCR chip. Talanta. 2018;185:229–36.

    Article  CAS  PubMed  Google Scholar 

  85. Hyun K-A, Koo G-B, Han H, Sohn J, Choi W, Kim S-I, et al. Epithelial-to-mesenchymal transition leads to loss of EpCAM and different physical properties in circulating tumor cells from metastatic breast cancer. Oncotarget. 2016;7(17):24677.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Gribko A, Künzel J, Wünsch D, Lu Q, Nagel SM, Knauer SK, et al. Is small smarter? Nanomaterial-based detection and elimination of circulating tumor cells: current knowledge and perspectives. Int J Nanomedicine. 2019;14:4187.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Yoon HJ, Shanker A, Wang Y, Kozminsky M, Jin Q, Palanisamy N, et al. Tunable thermal-sensitive polymer–graphene oxide composite for efficient capture and release of viable circulating tumor cells. Adv Mater. 2016;28(24):4891–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Che J, Yu V, Dhar M, Renier C, Matsumoto M, Heirich K, et al. Classification of large circulating tumor cells isolated with ultra-high throughput microfluidic Vortex technology. Oncotarget. 2016;7(11):12748.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Su W, Yu H, Jiang L, Chen W, Li H, Qin J. Integrated microfluidic device for enrichment and identification of circulating tumor cells from the blood of patients with colorectal cancer. Dis Markers. 2019;2019:1–9.

    Article  Google Scholar 

  90. Yoon HJ, Kim TH, Zhang Z, Azizi E, Pham TM, Paoletti C, et al. Sensitive capture of circulating tumour cells by functionalized graphene oxide nanosheets. Nat Nanotechnol. 2013;8(10):735–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Macaraniag C, Luan Q, Zhou J, Papautsky I. Microfluidic techniques for isolation, formation, and characterization of circulating tumor cells and clusters. APL Bioeng. 2022;6(3):031501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Deng Z, Wu S, Wang Y, Shi D. Circulating tumor cell isolation for cancer diagnosis and prognosis. EBioMedicine. 2022;83:104237.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Murlidhar V, Zeinali M, Grabauskiene S, Ghannad-Rezaie M, Wicha MS, Simeone DM, et al. A radial flow microfluidic device for ultra-high-throughput affinity-based isolation of circulating tumor cells. Small. 2014;10(23):4895–904.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Sarioglu AF, Aceto N, Kojic N, Donaldson MC, Zeinali M, Hamza B, et al. A microfluidic device for label-free, physical capture of circulating tumor cell clusters. Nat Methods. 2015;12(7):685–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Huang S-B, Wu M-H, Lin Y-H, Hsieh C-H, Yang C-L, Lin H-C, et al. High-purity and label-free isolation of circulating tumor cells (CTCs) in a microfluidic platform by using optically-induced-dielectrophoretic (ODEP) force. Lab Chip. 2013;13(7):1371–83.

    Article  CAS  PubMed  Google Scholar 

  96. Dou M, García JM, Zhan S, Li X. Interfacial nano-biosensing in microfluidic droplets for high-sensitivity detection of low-solubility molecules. Chem Commun. 2016;52(17):3470–3.

    Article  CAS  Google Scholar 

  97. Li L, Li Y, Shao Z, Luo G, Ding M, Liang Q. Simultaneous assay of oxygen-dependent cytotoxicity and genotoxicity of anticancer drugs on an integrated microchip. Anal Chem. 2018;90(20):11899–907.

    Article  CAS  PubMed  Google Scholar 

  98. Yun C-K, Hwang JW, Kwak TJ, Chang W-J, Ha S, Han K, et al. Nanoinjection system for precise direct delivery of biomolecules into single cells. Lab Chip. 2019;19(4):580–8.

    Article  CAS  PubMed  Google Scholar 

  99. Nilghaz A, Lu X. Detection of antibiotic residues in pork using paper-based microfluidic device coupled with filtration and concentration. Anal Chim Acta. 2019;1046:163–9.

    Article  CAS  PubMed  Google Scholar 

  100. Ma L, Qiao Y, Jones R, Singh N, Su M. Single cell HaloChip assay on paper for point-of-care diagnosis. Anal Bioanal Chem. 2016;408(27):7753–9.

    Article  CAS  PubMed  Google Scholar 

  101. Thuo MM, Martinez RV, Lan W-J, Liu X, Barber J, Atkinson MB, et al. Fabrication of low-cost paper-based microfluidic devices by embossing or cut-and-stack methods. Chem Mater. 2014;26(14):4230–7.

    Article  CAS  Google Scholar 

  102. Lin C-H, Hsiao Y-H, Chang H-C, Yeh C-F, He C-K, Salm EM, et al. A microfluidic dual-well device for high-throughput single-cell capture and culture. Lab Chip. 2015;15(14):2928–38.

    Article  CAS  PubMed  Google Scholar 

  103. Tran QD, Kong TF, Hu D, Lam RH. Deterministic sequential isolation of floating cancer cells under continuous flow. Lab Chip. 2016;16(15):2813–9.

    Article  CAS  PubMed  Google Scholar 

  104. Rho HS, Yang Y, Hanke AT, Ottens M, Terstappen LW, Gardeniers H. Programmable v-type valve for cell and particle manipulation in microfluidic devices. Lab Chip. 2016;16(2):305–11.

    Article  CAS  PubMed  Google Scholar 

  105. Kim HS, Devarenne TP, Han A. A high-throughput microfluidic single-cell screening platform capable of selective cell extraction. Lab Chip. 2015;15(11):2467–75.

    Article  CAS  PubMed  Google Scholar 

  106. Khamenehfar A, Beischlag T, Russell P, Ling M, Nelson C, Li P. Label-free isolation of a prostate cancer cell among blood cells and the single-cell measurement of drug accumulation using an integrated microfluidic chip. Biomicrofluidics. 2015;9(6):064104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Sharifi Noghabi H, Soo M, Khamenehfar A, Li PC. Dielectrophoretic trapping of single leukemic cells using the conventional and compact optical measurement systems. Electrophor. 2019;40(10):1478–85.

    Article  CAS  Google Scholar 

  108. Shen Z, Wu A, Chen X. Current detection technologies for circulating tumor cells. Chem Soc Rev. 2017;46(8):2038–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. He W, Kularatne SA, Kalli KR, Prendergast FG, Amato RJ, Klee GG, et al. Quantitation of circulating tumor cells in blood samples from ovarian and prostate cancer patients using tumor-specific fluorescent ligands. Int J Cancer. 2008;123(8):1968–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Cristofanilli M, Budd GT, Ellis MJ, Stopeck A, Matera J, Miller MC, et al. Circulating tumor cells, disease progression, and survival in metastatic breast cancer. N Engl J Med. 2004;351(8):781–91.

    Article  CAS  PubMed  Google Scholar 

  111. Politaki E, Agelaki S, Apostolaki S, Hatzidaki D, Strati A, Koinis F, et al. A comparison of three methods for the detection of circulating tumor cells in patients with early and metastatic breast cancer. Cell Physiol Biochem. 2017;44(2):594–606.

    Article  PubMed  Google Scholar 

  112. Lustberg M, Jatana KR, Zborowski M, Chalmers JJ. Emerging technologies for CTC detection based on depletion of normal cells. In: Ignatiadis M, Sotiriou C, Pantel K, editors. Minimal Residual Disease and Circulating Tumor Cells in Breast Cancer. Recent Results in Cancer Research, vol. 195. Berlin, Heidelberg: Springer; 2012. p. 97–110.

    Google Scholar 

  113. Tan W, Liang G, Xie X, Jiang W, Tan L, Sanders AJ, et al. Incorporating MicroRNA into molecular phenotypes of circulating tumor cells enhances the prognostic accuracy for patients with metastatic breast cancer. Oncol. 2019;24(11):e1044–e54.

    Article  CAS  Google Scholar 

  114. Kuessel L, Kasimir-Bauer S, Zeillinger R, Pateisky P, Ott J, Zeisler H, et al. Detection of circulating trophoblast particles in maternal blood using density gradient centrifugation in preeclampsia and in normotensive pregnancies. Hypertens Pregnancy. 2016;35(3):323–9.

    Article  PubMed  Google Scholar 

  115. Rosenberg R, Gertler R, Friederichs J, Fuehrer K, Dahm M, Phelps R, et al. Comparison of two density gradient centrifugation systems for the enrichment of disseminated tumor cells in blood. Cytom: J Int Soc Anal Cytol. 2002;49(4):150–8.

    Article  CAS  Google Scholar 

  116. Sun N, Li X, Wang Z, Li Y, Pei R. High-purity capture of CTCs based on micro-beads enhanced isolation by size of epithelial tumor cells (ISET) method. Biosens Bioelectron. 2018b;102:157–63.

    Article  CAS  PubMed  Google Scholar 

  117. Hofman V, Bonnetaud C, Ilie MI, Vielh P, Vignaud JM, Fléjou JF, et al. Preoperative circulating tumor cell detection using the isolation by size of epithelial tumor cell method for patients with lung cancer is a new prognostic biomarker. Clin Cancer Res. 2011;17(4):827–35.

    Article  CAS  PubMed  Google Scholar 

  118. Lecharpentier A, Vielh P, Perez-Moreno P, Planchard D, Soria J, Farace F. Detection of circulating tumour cells with a hybrid (epithelial/mesenchymal) phenotype in patients with metastatic non-small cell lung cancer. Br J Cancer. 2011;105(9):1338–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Vona G, Sabile A, Louha M, Sitruk V, Romana S, Schütze K, et al. Isolation by size of epithelial tumor cells: a new method for the immunomorphological and molecular characterization of circulating tumor cells. Am J Pathol. 2000;156(1):57–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Yap Y-S, Leong MC, Chua YW, Loh KWJ, Lee GE, Lim EH, et al. Detection and prognostic relevance of circulating tumour cells (CTCs) in Asian breast cancers using a label-free microfluidic platform. PLoS One. 2019;14(9):e0221305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Warkiani ME, Khoo BL, Wu L, Tay AKP, Bhagat AAS, Han J, et al. Ultra-fast, label-free isolation of circulating tumor cells from blood using spiral microfluidics. Nat Protoc. 2016;11(1):134–48.

    Article  CAS  PubMed  Google Scholar 

  122. Brychta N, Drosch M, Driemel C, Fischer JC, Neves RP, Esposito I, et al. Isolation of circulating tumor cells from pancreatic cancer by automated filtration. Oncotarget. 2017;8(49):86143.

    Article  PubMed  PubMed Central  Google Scholar 

  123. Xu L, Mao X, Imrali A, Syed F, Mutsvangwa K, Berney D, et al. Optimization and evaluation of a novel size based circulating tumor cell isolation system. PloS one. 2015;10(9):e0138032.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Miller MC, Robinson PS, Wagner C, O'Shannessy DJ. The Parsortix™ cell separation system—a versatile liquid biopsy platform. Cytometry A. 2018;93(12):1234–9.

    Article  PubMed  PubMed Central  Google Scholar 

  125. Winer-Jones JP, Vahidi B, Arquilevich N, Fang C, Ferguson S, Harkins D, et al. Circulating tumor cells: clinically relevant molecular access based on a novel CTC flow cell. PLoS One. 2014;9(1):e86717.

    Article  PubMed  PubMed Central  Google Scholar 

  126. De Luca F, Rotunno G, Salvianti F, Galardi F, Pestrin M, Gabellini S, et al. Mutational analysis of single circulating tumor cells by next generation sequencing in metastatic breast cancer. Oncotarget. 2016;7(18):26107–19.

    Article  PubMed  PubMed Central  Google Scholar 

  127. Bobek V, Gurlich R, Eliasova P, Kolostova K. Circulating tumor cells in pancreatic cancer patients: enrichment and cultivation. World J Gastroenterol. 2014;20(45):17163–70.

    Article  PubMed  PubMed Central  Google Scholar 

  128. Mayer JA, Pham T, Wong KL, Scoggin J, Sales EV, Clarin T, et al. FISH-based determination of HER2 status in circulating tumor cells isolated with the microfluidic CEE™ platform. Cancer Gene Ther. 2011;204(11):589–95.

    Article  CAS  Google Scholar 

  129. Guckenberger DJ, de Groot TE, Wan AM, Beebe DJ, Young EW. Micromilling: a method for ultra-rapid prototyping of plastic microfluidic devices. Lab Chip. 2015;15(11):2364–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Shaegh SAM, Pourmand A, Nabavinia M, Avci H, Tamayol A, Mostafalu P, et al. Rapid prototyping of whole-thermoplastic microfluidics with built-in microvalves using laser ablation and thermal fusion bonding. Sens Actuators B: Chem. 2018;255:100–9.

    Article  CAS  Google Scholar 

  131. Valino AD, Dizon JRC, Espera AH Jr, Chen Q, Messman J, Advincula RC. Advances in 3D printing of thermoplastic polymer composites and nanocomposites. Prog Polym Sci. 2019;98:101162.

    Article  CAS  Google Scholar 

  132. Yen DP, Ando Y, Shen K. A cost-effective micromilling platform for rapid prototyping of microdevices. Technology. 2016;4(4):234–9.

    Article  PubMed  PubMed Central  Google Scholar 

  133. Kussul E, Baidyk T, Ruiz-Huerta L, Caballero-Ruiz A, Velasco G, Kasatkina L, et al. Development of micromachine tool prototypes for microfactories. J Micromech Microeng. 2002;12(6):795.

    Article  Google Scholar 

  134. Pérez R, Dávila O, Molina A, Ramírez-Cadena M. Reconfigurable micro-machine tool design for desktop machining micro-factories. IFAC Proc Vol. 2013;46(9):1417–22.

    Article  Google Scholar 

  135. Zhakypov Z, Uzunovic T, Nergiz AO, Baran EA, Golubovic E, Sabanovic A. Desktop microfactory for high precision assembly and machining. In: 2014 IEEE 23rd International Symposium on Industrial Electronics (ISIE) 2014, pp. 1192–1197). IEEE. https://ieeexplore.ieee.org/document/6864783/authors#authors

    Google Scholar 

  136. Mohammed MI, Alam MNHZ, Kouzani A, Gibson I. Fabrication of microfluidic devices: Improvement of surface quality of CO2 laser machined poly (methylmethacrylate) polymer. J Micromech Microeng. 2016;27(1):015021.

    Article  Google Scholar 

  137. Martínez Vázquez R, Trotta G, Volpe A, Bernava G, Basile V, Paturzo M, et al. Rapid prototyping of plastic lab-on-a-chip by femtosecond laser micromachining and removable insert microinjection molding. Micromachines. 2017;8(11):328.

    Article  PubMed  PubMed Central  Google Scholar 

  138. Ho CMB, Ng SH, Li KHH, Yoon YJ. 3D printed microfluidics for biological applications. Lab Chip. 2015;15(18):3627–37.

    Article  CAS  PubMed  Google Scholar 

  139. Comina G, Suska A, Filippini D. Low cost lab-on-a-chip prototyping with a consumer grade 3D printer. Lab Chip. 2014;14(16):2978–82.

    Article  CAS  PubMed  Google Scholar 

  140. Alapan Y, Hasan MN, Shen R, Gurkan UA. Three-dimensional printing based hybrid manufacturing of microfluidic devices. J Nanotechnol Eng Med. 2015;6(2):021007.

    Article  PubMed  Google Scholar 

  141. Garraway LA, Verweij J, Ballman KV. Precision oncology: an overview. J Clin Oncol. 2013;31(15):1803–5.

    Article  PubMed  Google Scholar 

  142. Wu L, Zhu L, Huang M, Song J, Zhang H, Song Y, et al. Aptamer-based microfluidics for isolation, release and analysis of circulating tumor cells. TrAC-Trends Anal Chem. 2019;117:69–77.

    Article  CAS  Google Scholar 

  143. Chen C, Xu Y, Huang X, Mao F, Shen S, Xu Y, et al. Clinical characteristics and survival outcomes of patients with both primary breast cancer and primary ovarian cancer. Med. 2020;99(32):e21560.

    Article  Google Scholar 

  144. Wei Z, Zhou Y, Wang R, Wang J, Chen Z. Aptamers as smart ligands for targeted drug delivery in cancer therapy. Pharm. 2022;14(12):2561.

    CAS  Google Scholar 

  145. Tsai S-C, Hung L-Y, Lee G-B. An integrated microfluidic system for the isolation and detection of ovarian circulating tumor cells using cell selection and enrichment methods. Biomicrofluidics. 2017;11(3):034122.

    Article  PubMed  PubMed Central  Google Scholar 

  146. Hung LY, Wang CH, Hsu KF, Chou CY, Lee GB. An on-chip Cell-SELEX process for automatic selection of high-affinity aptamers specific to different histologically classified ovarian cancer cells. Lab Chip. 2014;14(20):4017–28.

    Article  CAS  PubMed  Google Scholar 

  147. Vandghanooni S, Sanaat Z, Barar J, Adibkia K, Eskandani M, Omidi Y. Recent advances in aptamer-based nanosystems and microfluidics devices for the detection of ovarian cancer biomarkers. TrAC Trends Anal Chem. 2021;143:116343. https://www.sciencedirect.com/science/article/abs/pii/S0165993621001667

    Google Scholar 

  148. Wolff AC, Hammond MEH, Hicks DG, Dowsett M, McShane LM, Allison KH, et al. Recommendations for human epidermal growth factor receptor 2 testing in breast cancer: American Society of Clinical Oncology/College of American Pathologists clinical practice guideline update. Arch Pathol Lab Med. 2014;138(2):241–56.

    Article  PubMed  Google Scholar 

  149. Lambein K, Van Bockstal M, Denys H, Libbrecht L. 2013 update of the American Society of Clinical Oncology/College of American Pathologists guideline for human epidermal growth factor receptor 2 testing: impact on immunohistochemistry-negative breast cancers. Clin Oncol. 2014;32(17):1856–7.

    Google Scholar 

  150. Marcus JS, Anderson WF, Quake SR. Parallel picoliter RT-PCR assays using microfluidics. Anal Chem. 2006;78(3):956–8.

    Article  CAS  PubMed  Google Scholar 

  151. Ferraro D, Champ J, Teste B, Serra M, Malaquin L, Viovy J-L, et al. Microfluidic platform combining droplets and magnetic tweezers: application to HER2 expression in cancer diagnosis. Sci Rep. 2016;6(1):1–11.

    Article  Google Scholar 

  152. Cong H, Zhang N. Perspectives in translating microfluidic devices from laboratory prototyping into scale-up production. Biomicrofluidics. 2022;16(2):021301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Pekin D, Skhiri Y, Baret J-C, Le Corre D, Mazutis L, Salem CB, et al. Quantitative and sensitive detection of rare mutations using droplet-based microfluidics. Lab Chip. 2011;11(13):2156–66.

    Article  CAS  PubMed  Google Scholar 

  154. Russo A, Bazan V, Agnese V, Rodolico V, Gebbia N. Prognostic and predictive factors in colorectal cancer: Kirsten Ras in CRC (RASCAL) and TP53CRC collaborative studies. Ann Oncol. 2005;16:iv44–iv9.

    Article  PubMed  Google Scholar 

  155. Lievre A, Bachet J-B, Boige V, Cayre A, Le Corre D, Buc E, et al. KRAS mutations as an independent prognostic factor in patients with advanced colorectal cancer treated with cetuximab. Clin Oncol. 2008;26(3):374–9.

    CAS  Google Scholar 

  156. Ana F, Helen S, Gregori G, Jean-François L. The combined analysis of solid and liquid biopsies provides additional clinical information to improve patient care. J Cancer Metastasis Treat. 2018;4:21.

    Article  Google Scholar 

  157. Christodoulou E, Yellapantula V, O’Halloran K, Xu L, Berry JL, Cotter JA, et al. Combined low-pass whole genome and targeted sequencing in liquid biopsies for pediatric solid tumors. npj Precision. Oncology. 2023;7(1):21.

    CAS  Google Scholar 

  158. Jiang B, Xie D, Wang S, Li X, Wu G. Advances in early detection methods for solid tumors. Front Genet. 2023;14:1091223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Pinzani P, D’Argenio V, Re MD, Pellegrini C, Cucchiara F, Salvianti F, et al. Updates on liquid biopsy: current trends and future perspectives for clinical application in solid tumors. Clin Chem Lab Med. 2021;59(7):1181–200.

    Article  CAS  PubMed  Google Scholar 

  160. Shirejini SZ, Inci F. The Yin and Yang of exosome isolation methods: conventional practice, microfluidics, and commercial kits. Biotechnol Adv. 2021;54:107814.

    Article  PubMed  Google Scholar 

  161. Wang Y, Wang S, Li L, Zou Y, Liu B, Fang X. Microfluidics-based molecular profiling of tumor-derived exosomes for liquid biopsy. View. 2023;4(2):20220048.

    Article  Google Scholar 

  162. Dong L, Lin W, Qi P, Xu MD, Wu X, Ni S, et al. Circulating long RNAs in serum extracellular vesicles: their characterization and potential application as biomarkers for diagnosis of colorectal cancer. Cancer Epidemiol Biomarkers Prev. 2016;25(7):1158–66.

    Article  CAS  PubMed  Google Scholar 

  163. Jia Y, Ni Z, Sun H, Wang C. Microfluidic approaches toward the isolation and detection of exosome nanovesicles. IEEE Access. 2019;7:45080–98.

    Article  Google Scholar 

  164. Wu M, Ouyang Y, Wang Z, Zhang R, Huang P-H, Chen C, et al. Isolation of exosomes from whole blood by integrating acoustics and microfluidics. Proc Natl Acad Sci U S A. 2017;114(40):10584–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Zhang P, He M, Zeng Y. Ultrasensitive microfluidic analysis of circulating exosomes using a nanostructured graphene oxide/polydopamine coating. Lab Chip. 2016;16(16):3033–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Silva AK, Kolosnjaj-Tabi J, Bonneau S, Marangon I, Boggetto N, Aubertin K, et al. Magnetic and photoresponsive theranosomes: translating cell-released vesicles into smart nanovectors for cancer therapy. Acs Nano. 2013;7(6):4954–66.

    Article  CAS  PubMed  Google Scholar 

  167. Kim MS, Haney MJ, Zhao Y, Mahajan V, Deygen I, Klyachko NL, et al. Development of exosome-encapsulated paclitaxel to overcome MDR in cancer cells. Nanomed: Nanotechnol Biol Med. 2016;12(3):655–64.

    Article  CAS  Google Scholar 

  168. Fang S, Tian H, Li X, Jin D, Li X, Kong J, et al. Clinical application of a microfluidic chip for immunocapture and quantification of circulating exosomes to assist breast cancer diagnosis and molecular classification. PLoS One. 2017;12(4):e0175050.

    Article  PubMed  PubMed Central  Google Scholar 

  169. Firatligil-Yildirir B, Yalcin-Ozuysal O, Nonappa N. Recent advances in lab-on-a-chip systems for breast cancer metastasis research. Nanoscale Adv. 2023;5:2375–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Iliescu FS, Vrtačnik D, Neuzil P, Iliescu C. Microfluidic technology for clinical applications of exosomes. Micromachines. 2019b;10(6):392.

    Article  PubMed  PubMed Central  Google Scholar 

  171. Brittain S, Paul K, Zhao X-M, Whitesides G. Soft lithography and microfabrication. Phys World. 1998;11(5):31.

    Article  CAS  Google Scholar 

  172. Rose MA, Bowen JJ, Morin SA. Emergent soft lithographic tools for the fabrication of functional polymeric microstructures. ChemPhysChem. 2019;20(7):909–25.

    Article  CAS  PubMed  Google Scholar 

  173. Qin D, Xia Y, Whitesides GM. Soft lithography for micro-and nanoscale patterning. Nat Protoc. 2010;5(3):491.

    Article  CAS  PubMed  Google Scholar 

  174. Xia Y, Whitesides GM. Soft lithography. Annu Rev Mater Sci. 1998;28(1):153–84.

    Article  CAS  Google Scholar 

  175. Iwai K, Shih KC, Lin X, Brubaker TA, Sochol RD, Lin L. Finger-powered microfluidic systems using multilayer soft lithography and injection molding processes. Lab Chip. 2014;14(19):3790–9.

    Article  CAS  PubMed  Google Scholar 

  176. Kunnavakkam MV, Houlihan F, Schlax M, Liddle J, Kolodner P, Nalamasu O, et al. Low-cost, low-loss microlens arrays fabricated by soft-lithography replication process. Appl Phys Lett. 2003;82(8):1152–4.

    Article  CAS  Google Scholar 

  177. Louis E, Bijkerk F, Shmaenok L, Voorma H-J, van der Wiel M, Schlatmann R, et al. Soft x-ray projection lithography using a high repetition rate laser-induced x-ray source for sub-100 nanometer lithography processes. Microelectron Eng. 1993;21(1-4):67–70.

    Article  CAS  Google Scholar 

  178. Malaquin L, Carcenac F, Vieu C, Mauzac M. Using polydimethylsiloxane as a thermocurable resist for a soft imprint lithography process. Microelectron Eng. 2002;61:379–84.

    Article  Google Scholar 

  179. Choi KM, Rogers JA. New advances in molding and printing processes for organic/plastic electronics using chemically modified stiff, photocured poly (dimethylsiloxane)(PDMS) elastomers designed for nano-resolution soft lithography. MRS Online Proc Lib (OPL). 2003;788. https://www.cambridge.org/core/journals/mrsonline-proceedings-library-archive/article/abs/new-advances-in-molding-and-printing-processes-for-organicplasticelectronics-using-chemically-modified-stiff-photocured-poly-dimethylsiloxane-pdms-elastomers-designed-fornanoresolution-soft-lithography/5D0D058D2EBBC6E4DDD419D481BEDE1C#

    Google Scholar 

  180. Rodrigue H, Bhandari B, Wang W, Ahn S-H. 3D soft lithography: a fabrication process for thermocurable polymers. J Mater Process Technol. 2015;217:302–9.

    Article  CAS  Google Scholar 

  181. Teng J, Yan H, Li L, Zhao M, Zhang H, Morthier G. Simple ultraviolet-based soft-lithography process for fabrication of low-loss polymer polysiloxanes-based waveguides. IET Optoelectron. 2011;5(6):265–9.

    Article  CAS  Google Scholar 

  182. Berthier E, Young EW, Beebe D. Engineers are from PDMS-land, biologists are from polystyrenia. Lab Chip. 2012;12(7):1224–37.

    Article  CAS  PubMed  Google Scholar 

  183. Gökaltun A, Kang YBA, Yarmush ML, Usta OB, Asatekin A. Simple surface modification of poly (dimethylsiloxane) via surface segregating smart polymers for biomicrofluidics. Sci Rep. 2019;9(1):7377.

    Article  PubMed  PubMed Central  Google Scholar 

  184. Amerian M, Amerian M, Sameti M, Seyedjafari E. Improvement of PDMS surface biocompatibility is limited by the duration of oxygen plasma treatment. J Biomed Mater Res A. 2019;107(12):2806–13.

    Article  CAS  PubMed  Google Scholar 

  185. Lin X, Park S, Choi D, Heo J, Hong J. Mechanically durable superhydrophobic PDMS-candle soot composite coatings with high biocompatibility. J Ind Eng Chem. 2019;74:79–85.

    Article  CAS  Google Scholar 

  186. Jamróz W, Szafraniec J, Kurek M, Jachowicz R. 3D printing in pharmaceutical and medical applications - recent achievements and challenges. Pharm Res. 2018;35(9):176.

    Article  PubMed  PubMed Central  Google Scholar 

  187. Malinauskas M, Rekštytė S, Lukoševičius L, Butkus S, Balčiūnas E, Pečiukaitytė M, et al. 3D Microporous scaffolds manufactured via combination of fused filament fabrication and direct laser writing ablation. Micromachines. 2014;5(4):839–58.

    Article  Google Scholar 

  188. Chen J, Tang M, Xu D. Integrated microfluidic chip coupled to mass spectrometry: a minireview of chip pretreatment methods and applications. J Chromatogr Open. 2021;1:100021.

    Article  Google Scholar 

  189. Jenne A, von der Ecken S, Moxley-Paquette V, Soong R. Integrated digital microfluidics NMR spectroscopy: a key step toward automated in vivo metabolomics. Anal Chem. 2023;95(14):5858–66.

    Article  CAS  PubMed  Google Scholar 

  190. Nassar O, Jouda M, Rapp M, Mager D, Korvink JG, MacKinnon N. Integrated impedance sensing of liquid sample plug flow enables automated high throughput NMR spectroscopy. Microsyst Nanoeng. 2021;7(1):30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Allert RD, Briegel KD, Bucher DB. Advances in nano- and microscale NMR spectroscopy using diamond quantum sensors. Chem Commun. 2022;58(59):8165–81.

    Article  CAS  Google Scholar 

  192. Haun JB, Castro CM, Wang R, Peterson VM, Marinelli BS, Lee H, et al. Micro-NMR for rapid molecular analysis of human tumor samples. Sci Transl Med. 2011;3(71):71ra16.

    Article  PubMed  PubMed Central  Google Scholar 

  193. Hopson RE, Peti W. Microcoil NMR spectroscopy: a novel tool for biological high throughput NMR spectroscopy. Methods Mol Biol. 2008;426:447–58.

    Article  CAS  PubMed  Google Scholar 

  194. Guerrini L, Alvarez-Puebla RA. Surface-enhanced Raman spectroscopy in cancer diagnosis, prognosis and monitoring. Cancers. 2019;11(6):748.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Zhang Y, Mi X, Tan X, Xiang R. Recent progress on liquid biopsy analysis using surface-enhanced Raman spectroscopy. Theranostics. 2019;9(2):491.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Ebrahimi G, Pakchin PS, Mota A, Omidian H, Omidi Y. Electrochemical microfluidic paper-based analytical devices for cancer biomarker detection: From 2D to 3D sensing systems. Talanta. 2023;257:124370.

    Article  CAS  PubMed  Google Scholar 

  197. Keyvani F, Debnath N, Ayman Saleh M, Poudineh M. An integrated microfluidic electrochemical assay for cervical cancer detection at point-of-care testing. Nanoscale. 2022;14(18):6761–70.

    Article  CAS  PubMed  Google Scholar 

  198. Blake N, Gaifulina R, Griffin LD, Bell IM, Thomas GMH. Machine learning of raman spectroscopy data for classifying cancers: a review of the recent literature. Diagnostics. 2022;12(6):1491.

    Article  PubMed  PubMed Central  Google Scholar 

  199. Cima I, Wen Yee C, Iliescu FS, Phyo WM, Lim KH, Iliescu C, et al. Label-free isolation of circulating tumor cells in microfluidic devices: current research and perspectives. Biomicrofluidics. 2013;7(1):11810.

    Article  PubMed  Google Scholar 

  200. Maryam S, Nogueira MS. Label-free optical spectroscopy for early detection of oral cancer. Diagnostics. 2022;12(12):2896.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

MK and SM thank the support of the Department of Pharmaceuticals, Ministry of Chemicals & Fertilizers, Government of India.

Author information

Authors and Affiliations

Authors

Contributions

All authors have reviewed the final version of the manuscript and approved it for publication.

Corresponding author

Correspondence to Murali Kumarasamy.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishra, S., Kumarasamy, M. Microfluidics engineering towards personalized oncology—a review. In vitro models 2, 69–81 (2023). https://doi.org/10.1007/s44164-023-00054-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s44164-023-00054-z

Keywords

Navigation