Skip to main content

Microfluidic Biosensor-Based Devices for Rapid Diagnosis and Effective Anti-cancer Therapeutic Monitoring for Breast Cancer Metastasis

  • Chapter
  • First Online:
Microfluidics and Biosensors in Cancer Research

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1379))

Abstract

Breast cancer with unpredictable metastatic recurrence is the leading cause of cancer-related mortality. Early cancer detection and optimized therapy are the principal determining factors for increased survival rate. Worldwide, researchers and clinicians are in search of efficient strategies for the timely management of cancer progression. Efficient preclinical models provide information on cancer initiation, malignancy progression, relapse, and drug efficacy. The distinct histopathological features and clinical heterogeneity allows no single model to mimic breast tumor. However, engineering three-dimensional (3D) in vitro models incorporating cells and biophysical cues using a combination of organoid culture, 3D printing, and microfluidic technology could recapitulate the tumor microenvironment. These models serve to be preferable predictive models bridging the translational research gap in drug development. Microfluidic device is a cost-effective advanced in vitro model for cancer research, diagnosis, and drug assay under physiologically relevant conditions. Integrating a biosensor with microfluidics allows rapid real-time analytical validation to provide highly sensitive, specific, reproducible, and reliable outcomes. In this manner, the multi-system approach in identifying biomarkers associated with cancer facilitates early detection, therapeutic window optimization, and post-treatment evaluation.

This chapter showcases the advancements related to in vitro breast cancer metastasis models focusing on microfluidic devices. The chapter aims to provide an overview of microfluidic biosensor-based devices for cancer detection and high-throughput chemotherapeutic drug screening.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sung H, Ferlay J, Siegel RL et al (2021) Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 71:209–249. https://doi.org/10.3322/CAAC.21660

    Article  PubMed  Google Scholar 

  2. Fidler IJ (2003) The pathogenesis of cancer metastasis: the “seed and soil” hypothesis revisited. Nat Rev Cancer 36(3):453–458. https://doi.org/10.1038/nrc1098

    Article  CAS  Google Scholar 

  3. Valastyan S, Weinberg RA (2011) Tumor metastasis: molecular insights and evolving paradigms. Cell 147:275–292. https://doi.org/10.1016/J.CELL.2011.09.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Chanmee T, Ontong P, Itano N (2016) Hyaluronan: a modulator of the tumor microenvironment. Cancer Lett 375:20–30. https://doi.org/10.1016/J.CANLET.2016.02.031

    Article  CAS  PubMed  Google Scholar 

  5. Rohan TE, Xue X, Lin HM et al (2014) Tumor microenvironment of metastasis and risk of distant metastasis of breast cancer. J Natl Cancer Inst 106. https://doi.org/10.1093/JNCI/DJU136

  6. Hebert JD, Myers SA, Naba A et al (2020) Proteomic profiling of the ECM of xenograft breast cancer metastases in different organs reveals distinct metastatic niches. Cancer Res 80:1475–1485. https://doi.org/10.1158/0008-5472.CAN-19-2961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Martin TA, Goyal A, Watkins G, Jiang WG (2005) Expression of the transcription factors snail, slug, and twist and their clinical significance in human breast cancer. Ann Surg Oncol 12:488–496. https://doi.org/10.1245/ASO.2005.04.010

    Article  PubMed  Google Scholar 

  8. Banys-Paluchowski M, Schneck H, Blassl C et al (2015) Prognostic relevance of circulating tumor cells in molecular subtypes of breast cancer. Geburtshilfe Frauenheilkd 75:232. https://doi.org/10.1055/S-0035-1545788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bidard FC, Peeters DJ, Fehm T et al (2014) Clinical validity of circulating tumour cells in patients with metastatic breast cancer: a pooled analysis of individual patient data. Lancet Oncol 15:406–414. https://doi.org/10.1016/S1470-2045(14)70069-5

    Article  PubMed  Google Scholar 

  10. Chen W, Hoffmann AD, Liu H, Liu X (2018) Organotropism: new insights into molecular mechanisms of breast cancer metastasis. NPJ Precis Oncol 2(1):4. https://doi.org/10.1038/s41698-018-0047-0

    Article  PubMed  PubMed Central  Google Scholar 

  11. Shupp AB, Kolb AD, Mukhopadhyay D et al (2018) Cancer metastases to bone: concepts, mechanisms, and interactions with bone osteoblasts. Cancer 10:182. https://doi.org/10.3390/CANCERS10060182

    Article  Google Scholar 

  12. Zhu L, Narloch JL, Onkar S et al (2019) Metastatic breast cancers have reduced immune cell recruitment but harbor increased macrophages relative to their matched primary tumors. J Immunother Cancer 71(7):1–10. https://doi.org/10.1186/S40425-019-0755-1

    Article  Google Scholar 

  13. Yuan C, Liu Z, Yu Q et al (2019) Expression of PD-1/PD-L1 in primary breast tumours and metastatic axillary lymph nodes and its correlation with clinicopathological parameters. Sci Rep 9:14356. https://doi.org/10.1038/s41598-019-50898-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Breslin S, O’Driscoll L (2016) The relevance of using 3D cell cultures, in addition to 2D monolayer cultures, when evaluating breast cancer drug sensitivity and resistance. Oncotarget 7:45745–45756. https://doi.org/10.18632/oncotarget.9935

    Article  PubMed  PubMed Central  Google Scholar 

  15. Fontoura JC, Viezzer C, dos Santos FG et al (2020) Comparison of 2D and 3D cell culture models for cell growth, gene expression and drug resistance. Mater Sci Eng C 107:110264. https://doi.org/10.1016/J.MSEC.2019.110264

    Article  CAS  Google Scholar 

  16. Murayama T, Gotoh N (2019) Patient-derived xenograft models of breast cancer and their application. Cell 8:621. https://doi.org/10.3390/CELLS8060621

    Article  CAS  Google Scholar 

  17. Monteiro MV, Zhang YS, Gaspar VM, Mano JF (2021) 3D-bioprinted cancer-on-a-chip: level-up organotypic in vitro models. Trends Biotechnol. https://doi.org/10.1016/J.TIBTECH.2021.08.007

  18. Sung KE, Beebe DJ (2014) Microfluidic 3D models of cancer. Adv Drug Deliv Rev 79–80:68–78. https://doi.org/10.1016/J.ADDR.2014.07.002

    Article  PubMed  Google Scholar 

  19. Han SJ, Kwon S, Kim KS (2021) Challenges of applying multicellular tumor spheroids in preclinical phase. Cancer Cell Int 21:152. https://doi.org/10.1186/S12935-021-01853-8

    Article  PubMed  PubMed Central  Google Scholar 

  20. Crowder SW, Balikov DA, Hwang Y-S, Sung H-J (2014) Cancer stem cells under hypoxia as a chemoresistance factor in breast and brain. Curr Pathobiol Rep 2:33. https://doi.org/10.1007/S40139-013-0035-6

    Article  PubMed  PubMed Central  Google Scholar 

  21. Ham SL, Joshi R, Luker GD, Tavana H (2016) Engineered breast cancer cell spheroids reproduce biologic properties of solid tumors. Adv Healthc Mater 5:2788. https://doi.org/10.1002/ADHM.201600644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Reynolds DS, Tevis KM, Blessing WA et al (2017) Breast cancer spheroids reveal a differential cancer stem cell response to chemotherapeutic treatment. Sci Rep 71(7):1–12. https://doi.org/10.1038/s41598-017-10863-4

    Article  CAS  Google Scholar 

  23. Balachander GM, Balaji SA, Rangarajan A, Chatterjee K (2015) Enhanced metastatic potential in a 3D tissue scaffold toward a comprehensive in vitro model for breast cancer metastasis. ACS Appl Mater Interfaces 7:27810–27822. https://doi.org/10.1021/ACSAMI.5B09064/SUPPL_FILE/AM5B09064_SI_001.PDF

    Article  CAS  PubMed  Google Scholar 

  24. Datta P, Dey M, Ataie Z et al (2020) 3D bioprinting for reconstituting the cancer microenvironment. NPJ Precis Oncol 4:18. https://doi.org/10.1038/s41698-020-0121-2

    Article  PubMed  PubMed Central  Google Scholar 

  25. Wang Y, Shi W, Kuss M et al (2018) 3D bioprinting of breast cancer models for drug resistance study. ACS Biomater Sci Eng 4:4401–4411. https://doi.org/10.1021/ACSBIOMATERIALS.8B01277

    Article  CAS  PubMed  Google Scholar 

  26. Bock N, Kryza T, Shokoohmand A et al (2021) In vitro engineering of a bone metastases model allows for study of the effects of antiandrogen therapies in advanced prostate cancer. Sci Adv 7. https://doi.org/10.1126/SCIADV.ABG2564

  27. Meijer TG, Verkaik NS, van Deurzen CHM et al (2019) Direct ex vivo observation of homologous recombination defect reversal after DNA-damaging chemotherapy in patients with metastatic breast cancer. JCO Precis Oncol:1–12. https://doi.org/10.1200/PO.18.00268

  28. Muraro MG, Muenst S, Mele V et al (2017) Ex-vivo assessment of drug response on breast cancer primary tissue with preserved microenvironments. Onco Targets Ther 6. https://doi.org/10.1080/2162402X.2017.1331798

  29. Hofer M, Lutolf MP (2021) Engineering organoids. Nat Rev Mater 65(6):402–420. https://doi.org/10.1038/s41578-021-00279-y

    Article  CAS  Google Scholar 

  30. Sachs N, de Ligt J, Kopper O et al (2018) A living biobank of breast cancer organoids captures disease heterogeneity. Cell 172:373–386.e10. https://doi.org/10.1016/J.CELL.2017.11.010

    Article  CAS  PubMed  Google Scholar 

  31. Coluccio ML, Perozziello G, Malara N et al (2019) Microfluidic platforms for cell cultures and investigations. Microelectron Eng 208:14–28. https://doi.org/10.1016/J.MEE.2019.01.004

    Article  CAS  Google Scholar 

  32. Dhiman N, Rath SN (2020) Perfusion-based 3D tumor-on-chip devices for anticancer drug testing. Biomater 3D Tumor Model:379–398. https://doi.org/10.1016/B978-0-12-818128-7.00016-2

  33. Sankar S, Mehta V, Ravi S et al (2021) A novel design of microfluidic platform for metronomic combinatorial chemotherapy drug screening based on 3D tumor spheroid model. Biomed Microdevices 234(23):1–10. https://doi.org/10.1007/S10544-021-00593-W

    Article  Google Scholar 

  34. Niculescu A-G, Chircov C, Bîrcă AC, Grumezescu AM (2021) Fabrication and applications of microfluidic devices: a review. Int J Mol Sci 22:2011. https://doi.org/10.3390/IJMS22042011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Scott SM, Ali Z (2021) Fabrication methods for microfluidic devices: an overview. Micromachines 12:319. https://doi.org/10.3390/MI12030319

    Article  PubMed  PubMed Central  Google Scholar 

  36. Qin D, Xia Y, Whitesides GM (2010) Soft lithography for micro- and nanoscale patterning. Nat Protoc 53(5):491–502. https://doi.org/10.1038/nprot.2009.234

    Article  CAS  Google Scholar 

  37. Tsao C-W, Li W, Tan SH, Nguyen N-T (2016) Polymer microfluidics: simple, low-cost fabrication process bridging academic lab research to commercialized production. Micromachines 7:225. https://doi.org/10.3390/MI7120225

    Article  PubMed Central  Google Scholar 

  38. Mei X, Middleton K, Shim D et al (2019) Microfluidic platform for studying osteocyte mechanoregulation of breast cancer bone metastasis. Integr Biol 11:119–129. https://doi.org/10.1093/INTBIO/ZYZ008

    Article  Google Scholar 

  39. Ayuso JM, Gong MM, Skala MC et al (2020) Human tumor-lymphatic microfluidic model reveals differential conditioning of lymphatic vessels by breast cancer cells. Adv Healthc Mater 9:1900925. https://doi.org/10.1002/ADHM.201900925

    Article  CAS  Google Scholar 

  40. Lanz HL, Saleh A, Kramer B et al (2017) Therapy response testing of breast cancer in a 3D high-throughput perfused microfluidic platform. BMC Cancer 17. https://doi.org/10.1186/S12885-017-3709-3

  41. Nashimoto Y, Okada R, Hanada S et al (2020) Vascularized cancer on a chip: the effect of perfusion on growth and drug delivery of tumor spheroid. Biomaterials 229:119547. https://doi.org/10.1016/J.BIOMATERIALS.2019.119547

    Article  CAS  PubMed  Google Scholar 

  42. Shirure VS, Bi Y, Curtis MB et al (2018) Tumor-on-a-chip platform to investigate progression and drug sensitivity in cell lines and patient-derived organoids. Lab Chip 18:3687–3702. https://doi.org/10.1039/C8LC00596F

    Article  CAS  PubMed  Google Scholar 

  43. Mehta V, Rath SN (2021) 3D printed microfluidic devices: a review focused on four fundamental manufacturing approaches and implications on the field of healthcare. Bio-Design Manuf 42(4):311–343. https://doi.org/10.1007/S42242-020-00112-5

    Article  Google Scholar 

  44. Felton H, Hughes R, Diaz-Gaxiola A (2021) Negligible-cost microfluidic device fabrication using 3D-printed interconnecting channel scaffolds. PLoS One 16:e0245206. https://doi.org/10.1371/JOURNAL.PONE.0245206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Aung A, Kumar V, Theprungsirikul J et al (2020) An engineered tumor-on-a-chip device with breast cancer–immune cell interactions for assessing T-cell recruitment. Cancer Res 80:263–275. https://doi.org/10.1158/0008-5472.CAN-19-0342

    Article  CAS  PubMed  Google Scholar 

  46. Chen J, Liu CY, Wang X et al (2020) 3D printed microfluidic devices for circulating tumor cells (CTCs) isolation. Biosens Bioelectron 150:111900. https://doi.org/10.1016/J.BIOS.2019.111900

    Article  CAS  PubMed  Google Scholar 

  47. Chu C-H, Liu R, Ozkaya-Ahmadov T et al (2021) Negative enrichment of circulating tumor cells from unmanipulated whole blood with a 3D printed device. Sci Rep 11:20583. https://doi.org/10.1038/s41598-021-99951-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Cai S, Shi H, Li G et al (2019) 3D-printed concentration-controlled microfluidic chip with diffusion mixing pattern for the synthesis of alginate drug delivery microgels. Nanomaterials (Basel) 9. https://doi.org/10.3390/NANO9101451

  49. Chang Y, Jiang J, Chen W et al (2020) Biomimetic metal-organic nanoparticles prepared with a 3D-printed microfluidic device as a novel formulation for disulfiram-based therapy against breast cancer. Appl Mater Today 18:100492. https://doi.org/10.1016/J.APMT.2019.100492

    Article  PubMed  Google Scholar 

  50. Mohankumar P, Ajayan J, Mohanraj T, Yasodharan R (2021) Recent developments in biosensors for healthcare and biomedical applications: a review. Measurement 167:108293. https://doi.org/10.1016/J.MEASUREMENT.2020.108293

    Article  Google Scholar 

  51. Naresh V, Lee N (2021) A review on biosensors and recent development of nanostructured materials-enabled biosensors. Sensors 21:1109. https://doi.org/10.3390/S21041109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Tothill IE (2009) Biosensors for cancer markers diagnosis. Semin Cell Dev Biol 20:55–62. https://doi.org/10.1016/J.SEMCDB.2009.01.015

    Article  CAS  PubMed  Google Scholar 

  53. Bhalla N, Jolly P, Formisano N, Estrela P (2016) Introduction to biosensors. Essays Biochem 60:1. https://doi.org/10.1042/EBC20150001

    Article  PubMed  PubMed Central  Google Scholar 

  54. Atkinson AJ, Colburn WA, DeGruttola VG et al (2001) Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Ther 69:89–95. https://doi.org/10.1067/MCP.2001.113989

    Article  Google Scholar 

  55. Pereira A, Sales M, Rodrigues L (2019) Biosensors for rapid detection of breast cancer biomarkers. Adv Biosens Heal Care Appl:71–103. https://doi.org/10.1016/B978-0-12-815743-5.00003-2

  56. Mittal S, Kaur H, Gautam N, Mantha AK (2017) Biosensors for breast cancer diagnosis: a review of bioreceptors, biotransducers and signal amplification strategies. Biosens Bioelectron 88:217–231. https://doi.org/10.1016/J.BIOS.2016.08.028

    Article  CAS  PubMed  Google Scholar 

  57. Morales MA, Halpern JM (2018) Guide to selecting a biorecognition element for biosensors. Bioconjug Chem 29:3231. https://doi.org/10.1021/ACS.BIOCONJCHEM.8B00592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Huerta-Nuñez LFE, Gutierrez-Iglesias G, Martinez-Cuazitl A et al (2019) A biosensor capable of identifying low quantities of breast cancer cells by electrical impedance spectroscopy. Sci Rep 91(9):1–12. https://doi.org/10.1038/s41598-019-42776-9

    Article  CAS  Google Scholar 

  59. Zhurauski P, Arya SK, Jolly P et al (2018) Sensitive and selective Affimer-functionalised interdigitated electrode-based capacitive biosensor for Her4 protein tumour biomarker detection. Biosens Bioelectron 108:1–8. https://doi.org/10.1016/J.BIOS.2018.02.041

    Article  CAS  PubMed  Google Scholar 

  60. Uygun ZO, Yeniay L, Gi̇rgi̇n Sağın F (2020) CRISPR-dCas9 powered impedimetric biosensor for label-free detection of circulating tumor DNAs. Anal Chim Acta 1121:35–41. https://doi.org/10.1016/J.ACA.2020.04.009

    Article  CAS  PubMed  Google Scholar 

  61. Hakimian F, Ghourchian H, Hashemi AS et al (2018) Ultrasensitive optical biosensor for detection of miRNA-155 using positively charged Au nanoparticles. Sci Rep 8:2943. https://doi.org/10.1038/s41598-018-20229-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Loyez M, Hassan EM, Lobry M et al (2020) Rapid detection of circulating breast cancer cells using a multiresonant optical fiber aptasensor with plasmonic amplification. ACS Sens 5:454–463. https://doi.org/10.1021/ACSSENSORS.9B02155

    Article  CAS  PubMed  Google Scholar 

  63. Song S, Lee JU, Kang J et al (2020) Real-time monitoring of distinct binding kinetics of hot-spot mutant p53 protein in human cancer cells using an individual nanorod-based plasmonic biosensor. Sens Actuators B 322:128584. https://doi.org/10.1016/J.SNB.2020.128584

    Article  CAS  Google Scholar 

  64. Li F, Chen A, Reeser A et al (2019) Vinculin force sensor detects tumor-osteocyte interactions. Sci Rep 91(9):1–11. https://doi.org/10.1038/s41598-019-42132-x

    Article  CAS  Google Scholar 

  65. Park C, Abafogi AT, Ponnuvelu DV et al (2021) Enhanced luminescent detection of circulating tumor cells by a 3D printed Immunomagnetic concentrator. Biosensors 11. https://doi.org/10.3390/BIOS11080278

  66. Motaghi H, Ziyaee S, Mehrgardi MA et al (2018) Electrochemiluminescence detection of human breast cancer cells using aptamer modified bipolar electrode mounted into 3D printed microchannel. Biosens Bioelectron 118:217–223. https://doi.org/10.1016/J.BIOS.2018.07.066

    Article  CAS  PubMed  Google Scholar 

  67. Nasrollahpour H, Mahdipour M, Isildak I et al (2021) A highly sensitive electrochemiluminescence cytosensor for detection of SKBR-3 cells as metastatic breast cancer cell line: a constructive phase in early and precise diagnosis. Biosens Bioelectron 178:113023. https://doi.org/10.1016/J.BIOS.2021.113023

    Article  CAS  PubMed  Google Scholar 

  68. Atay S, Pişkin K, Yılmaz F et al (2015) Quartz crystal microbalance based biosensors for detecting highly metastatic breast cancer cells via their transferrin receptors. Anal Methods 8:153–161. https://doi.org/10.1039/C5AY02898A

    Article  CAS  Google Scholar 

  69. Yılmaz M, Bakhshpour M, Göktürk I et al (2021) Quartz crystal microbalance (QCM) based biosensor functionalized by HER2/neu antibody for breast cancer cell detection. Chemosensors 9:80. https://doi.org/10.3390/CHEMOSENSORS9040080

    Article  Google Scholar 

  70. Kang J-S, Lee M-H (2009) Overview of therapeutic drug monitoring. Korean J Intern Med 24:1. https://doi.org/10.3904/KJIM.2009.24.1.1

    Article  PubMed  PubMed Central  Google Scholar 

  71. Liao KC, Chiu HS, Fan SY et al (2016) Percutaneous fiber-optic biosensor for immediate evaluation of chemotherapy efficacy in vivo (part I): strategy of assay design for monitoring non-homogeneously distributed biomarkers. Sens Actuators B 222:544–550. https://doi.org/10.1016/J.SNB.2015.08.067

    Article  CAS  Google Scholar 

  72. Attari F, Hazim H, Zandi A et al (2021) Circumventing paclitaxel resistance in breast cancer cells using a nanoemulsion system and determining its efficacy via an impedance biosensor. Analyst 146:3225–3233. https://doi.org/10.1039/D0AN02013C

    Article  CAS  PubMed  Google Scholar 

  73. Moghadam FH, Taher MA, Karimi-Maleh H (2021) Doxorubicin anticancer drug monitoring by ds-DNA-based electrochemical biosensor in clinical samples. Micromachines 12:808. https://doi.org/10.3390/MI12070808

    Article  Google Scholar 

  74. Otieno BA, Krause CE, Jones AL et al (2016) Cancer diagnostics via ultrasensitive multiplexed detection of parathyroid hormone-related peptides with a microfluidic Immunoarray. Anal Chem 88:9269–9275. https://doi.org/10.1021/ACS.ANALCHEM.6B02637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Fan Z, Geng Z, Fang W et al (2020) Smartphone biosensor system with multi-testing unit based on localized surface Plasmon resonance integrated with microfluidics chip. Sensors 20. https://doi.org/10.3390/S20020446

  76. Zheng Z, Wu L, Li L et al (2018) Simultaneous and highly sensitive detection of multiple breast cancer biomarkers in real samples using a SERS microfluidic chip. Talanta 188:507–515. https://doi.org/10.1016/J.TALANTA.2018.06.013

    Article  CAS  PubMed  Google Scholar 

  77. Kashefi-Kheyrabadi L, Kim J, Chakravarty S et al (2020) Detachable microfluidic device implemented with electrochemical aptasensor (DeMEA) for sequential analysis of cancerous exosomes. Biosens Bioelectron 169:112622. https://doi.org/10.1016/J.BIOS.2020.112622

    Article  CAS  PubMed  Google Scholar 

  78. Wang C, Zhang Y, Tang W et al (2021) Ultrasensitive, high-throughput and multiple cancer biomarkers simultaneous detection in serum based on graphene oxide quantum dots integrated microfluidic biosensing platform. Anal Chim Acta 1178:338791. https://doi.org/10.1016/J.ACA.2021.338791

    Article  CAS  PubMed  Google Scholar 

  79. Lee J, Mehrotra S, Zare-Eelanjegh E et al (2021) A heart-breast cancer-on-a-chip platform for disease modeling and monitoring of cardiotoxicity induced by cancer chemotherapy. Small 17:2004258. https://doi.org/10.1002/SMLL.202004258

    Article  CAS  Google Scholar 

  80. Huang C-C, Kuo Y-H, Chen Y-S et al (2021) A miniaturized, DNA-FET biosensor-based microfluidic system for quantification of two breast cancer biomarkers. Microfluid Nanofluidics 254(25):1–12. https://doi.org/10.1007/S10404-021-02437-8

    Article  Google Scholar 

  81. Pandya HJ, Dhingra K, Prabhakar D et al (2017) A microfluidic platform for drug screening in a 3D cancer microenvironment. Biosens Bioelectron 94:632. https://doi.org/10.1016/J.BIOS.2017.03.054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Dornhof J, Kieninger J, Muralidharan H et al (2021) Oxygen and lactate monitoring in 3D breast cancer organoid culture with sensor-integrated microfluidic platform. In: 21st international conference on solid-state sensors, actuators microsystems, transducers, pp 703–706. https://doi.org/10.1109/TRANSDUCERS50396.2021.9495557

    Chapter  Google Scholar 

  83. Carvajal S, Fera SN, Jones AL et al (2018) Disposable inkjet-printed electrochemical platform for detection of clinically relevant HER-2 breast cancer biomarker. Biosens Bioelectron 104:158–162. https://doi.org/10.1016/J.BIOS.2018.01.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Zhang J, Chua SL, Khoo BL (2021) Worm-based microfluidic biosensor for real-time assessment of the metastatic status. Cancer 13:873. https://doi.org/10.3390/CANCERS13040873

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Council of Scientific & Industrial Research (CSIR), Government of India. The authors also like to acknowledge Mr. Dulam Praveen Kumar for providing an oversight on the biosensor part.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subha Narayan Rath .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sukanya, V.S., Rath, S.N. (2022). Microfluidic Biosensor-Based Devices for Rapid Diagnosis and Effective Anti-cancer Therapeutic Monitoring for Breast Cancer Metastasis. In: Caballero, D., Kundu, S.C., Reis, R.L. (eds) Microfluidics and Biosensors in Cancer Research. Advances in Experimental Medicine and Biology, vol 1379. Springer, Cham. https://doi.org/10.1007/978-3-031-04039-9_13

Download citation

Publish with us

Policies and ethics