Skip to main content

Advertisement

Log in

Understanding α-lipoic acid photochemistry helps to control the synthesis of plasmonic gold nanostructures

  • Original Papers
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

We propose the photopolymerization of lipoic acid (LA) as an novel approach to produce a cross-linked polymeric matrix of lipoic acid monomers (PALA) which helps to control the size of plasmonic gold nanostructures when using 3,3,6,8-tetramethyl-1-tetralone as the photo-initiator for the reduction of Au(III) to Au0. A complete characterization of the polymer is included, and the dual behaviour of LA as an in situ stabilizer and reducing agent is investigated. These findings are relevant to the understanding of the photochemical transformation of this biologically relevant compound and would benefit the increasing use of LA and PALA for the synthesis of various nanomaterials.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Scott, B. C., Aruoma, O. I., Evans, P. J., O’Neill, C., Van Der Vliet, A., Cross, C. E., Tritschler, H., & Halliwell, B. (1994). Lipoic and dihydrolipoic acids as antioxidants. A critical evaluation. Free Radical Research, 20, 119–133.

    Article  CAS  PubMed  Google Scholar 

  2. Moini, H., Packer, L., & Saris, N. E. L. (2002). Antioxidant and prooxidant activities of α-lipoic acid and dihydrolipoic acid. Toxicology and Applied Pharmacology, 182, 84–90.

    Article  CAS  PubMed  Google Scholar 

  3. Packer, L., & Cadenas, E. (2011). Lipoic acid: Energy metabolism and redox regulation of transcription and cell signalling. Journal of Clinical Biochemistry Nutrition, 48, 26–32.

    Article  CAS  PubMed  Google Scholar 

  4. Salehi, B., Berkay Yılmaz, Y., Antika, G., BoyunegmezTumer, T., FawziMahomoodally, M., Lobine, D., Akram, M., Riaz, M., Capanoglu, E., Sharopov, F., Martins, N., Cho, W. C., & Sharifi-Rad, J. (2019). Insights on the use of α-lipoic acid for therapeutic purposes. Biomolecules, 9, 356.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kim, K., Kim, J., Kim, H., & Sung, G. Y. (2021). Effect of α-lipoic acid on the development of human skin equivalents using a pumpless skin-on-a-chip model. International Journal of Molecular Sciences, 22, 2160.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Podda, M., Rallis, M., Traber, M. G., Packer, L., & Maibachl, H. (1996). Kinetic study of cutaneous and subcutaneous distribution following topical application of [7,8–14C] rac-α-lipoic acid onto hairless mice. Biochemical Pharmacology, 52, 627–633.

    Article  CAS  PubMed  Google Scholar 

  7. Devasagayam, T. P. A., Subramanian, M., Pradhan, D. S., & Sies, H. (1993). Prevention of singlet oxygen–induced DNA damage by lipoate. Chemico-Biological Interactions, 86, 79–92.

    Article  CAS  PubMed  Google Scholar 

  8. Suzuki, Y. J., Tsuchiya, M., & Packer, L. (1991). Thioctic acid and dihydrolipoic acid are novel antioxidants which interact with reactive oxygen species. Free Radical Research Communications, 15, 255–263.

    Article  CAS  PubMed  Google Scholar 

  9. Häkkinen, H. (2012). The gold-sulfur interface at the nanoscale. Nature Chemistry, 4, 443–455.

    Article  PubMed  Google Scholar 

  10. Asadirad, A. M., Erno, Z., & Branda, N. R. (2013). Photothermal release of singlet oxygen from gold nanoparticles. Chemical Communications, 49, 5639–5641.

    Article  CAS  PubMed  Google Scholar 

  11. Bard, A., Rondon, R., Marquez, D. T., Lanterna, A. E., & Scaiano, J. C. (2018). How fast can thiols bind to the gold nanoparticle surface? Photochemistry and Photobiology, 94, 1109–1115.

    Article  CAS  PubMed  Google Scholar 

  12. Matsugo, S., Han, D., Tritschler, H. J., & Packer, L. (1996). Decomposition of alpha-lipoic acid derivatives by photoirradiation-formation of dihydrolipoic acid from alpha-lipoic acid. Biochemistry and Molecular Biology International, 38, 51–59.

    CAS  PubMed  Google Scholar 

  13. Wagner, A. F., Walton, E., Boxer, G. E., Pruss, M. P., Holly, F. W., & Folkers, K. (1956). Properties and derivatives of α-lipoic acid. Journal of the American Chemical Society, 78, 5079–5081.

    Article  CAS  Google Scholar 

  14. Affleck, J. G., & Dougherty, G. (1950). The preparation and relative recativities of many-membered cyclic disulfides. Journal of Organic Chemistry, 15, 865–868.

    Article  CAS  Google Scholar 

  15. Brown, P. R., & Edwards, J. O. (1969). Effect of solvent on the photolysis of.alpha.-lipoic acid. Journal of Organic Chemistry, 34, 3131–3135.

    Article  CAS  PubMed  Google Scholar 

  16. Brown, P. R., & Edwards, J. O. (1969). Use of thin-layer chromatography in following product formation in the photolysis of alpha-lipoic acid. Journal of Chromatography, 43, 515–518.

    Article  CAS  PubMed  Google Scholar 

  17. Bradley, D. F., & Calvin, M. (1955). The effect of thioctic acid on the quantum efficiency of the Hill reaction in intermittent light. Proceedings of the National Academy of Sciences of the United States of America, 41, 563–571.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Barltrop, J. A., Hayes, P. M., & Calvin, M. (1954). The chemistry of 1,2-dithiolane (trimethylene disulfide) as a model for the primary quantum conversion act in photosynthesis. Journal of the American Chemical Society, 76, 4348–4367.

    Article  CAS  Google Scholar 

  19. Bucher, G., Lu, C., & Sander, W. (2005). The photochemistry of lipoic acid: Photoionization and observation of a triplet excited state of a disulfide. ChemPhysChem, 6, 2607–2618.

    Article  CAS  PubMed  Google Scholar 

  20. Simoncelli, S., de AlwisWeerasekera, H., Fasciani, C., Boddy, C. N., Aramendia, P. F., Alarcon, E. I., & Scaiano, J. C. (2015). Thermoplasmonic ssDNA dynamic release from gold nanoparticles examined with advanced fluorescence microscopy. The Journal of Physical Chemistry Letters, 6, 1499–1503.

    Article  CAS  PubMed  Google Scholar 

  21. Cely-Pinto, M., & Scaiano, J. C. (2021). Photoenolization as a convenient driver for the synthesis of plasmonic nanostructures. Photochemical & Photobiological Sciences, 20, 1611–1619.

    Article  CAS  Google Scholar 

  22. Li, C.-C., Chang, S.-J., Su, F.-J., Lin, S.-W., & Chou, Y.-C. (2013). Effects of capping agents on the dispersion of silver nanoparticles. Colloids and Surfaces A: Physicochemical Engineering Aspects, 419, 209–215.

    Article  CAS  Google Scholar 

  23. Restrepo, C. V., & Villa, C. C. (2021). Synthesis of silver nanoparticles, influence of capping agents, and dependence on size and shape: A review. Environmental Nanotechnology Monitoring & Management, 15, 100428.

    Article  CAS  Google Scholar 

  24. Javed, R., Zia, M., Naz, S., Aisida, S. O., Ain, Nu., & Ao, Q. (2020). Role of capping agents in the application of nanoparticles in biomedicine and environmental remediation: Recent trends and future prospects. Journal of Nanobiotechnology, 18, 172.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Gao, M., Sun, L., Wang, Z., & Zhao, Y. (2013). Controlled synthesis of Ag nanoparticles with different morphologies and their antibacterial properties. Materials Science and Engineering: C, 33, 397–404.

    Article  CAS  PubMed  Google Scholar 

  26. Hussain, I., Brust, M., Papworth, A. J., & Cooper, A. I. (2003). Preparation of acrylate-stabilized gold and silver hydrosols and gold−polymer composite films. Langmuir, 19, 4831–4835.

    Article  CAS  Google Scholar 

  27. Shimmin, R. G., Schoch, A. B., & Braun, P. V. (2004). Polymer size and concentration effects on the size of gold nanoparticles capped by polymeric thiols. Langmuir, 20, 5613–5620.

    Article  CAS  PubMed  Google Scholar 

  28. Alli, A., Hazer, B., & Baysal, B. M. (2006). Determination of solubility parameters of cross-linked macromonomeric initiators based on polypropylene glycol. European Polymer Journal, 42, 3024–3031.

    Article  CAS  Google Scholar 

  29. Arima, T., Hamada, T., & McCabe, J. F. (1995). The effects of cross-linking agents on some properties of HEMA-based resins. Journal of Dental Research, 74, 1597–1601.

    Article  CAS  PubMed  Google Scholar 

  30. Liu, Z., Shen, N., Tang, Z., Zhang, D., Ma, L., Yang, C., & Chen, X. (2019). An eximious and affordable GSH stimulus-responsive poly(α-lipoic acid) nanocarrier bonding combretastatin A4 for tumor therapy. Biomaterials Science, 7, 2803–2811.

    Article  CAS  PubMed  Google Scholar 

  31. Kisanuki, A., Kimpara, Y., Oikado, Y., Kado, N., Matsumoto, M., & Endo, K. (2010). 19. Kisanuki_10. Journal of Polymer Science, 48, 5247–5253.

    CAS  Google Scholar 

  32. Wada, N., Wakami, H., Konishi, T., & Matsugo, S. (2009). The degradation and regeneration of α-lipoic acid under the irradiation of UV light in the existence of homocysteine. Journal of Clinical Biochemistry Nutrition, 44, 218–222.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Endo, K., & Yamanaka, T. (2006). Copolymerization of lipoic acid with 1,2-dithiane and characterization of the copolymer as an interlocked cyclic polymer. Macromolecules, 39, 4038–4043.

    Article  CAS  Google Scholar 

  34. Niu, Z., & Gibson, H. W. (2009). Polycatenanes. Chemical Reviews, 109, 6024–6046.

    Article  CAS  PubMed  Google Scholar 

  35. Endo, K., Shiroi, T., & Murata, N. (2005). Thermal polymerization of 1,2-dithiane. Polymer Journal, 37, 512–516.

    Article  CAS  Google Scholar 

  36. Clarson, S. J., & Semlyen, J. A. (1986). Studies of cyclic and linear poly(dimethyl-siloxanes): 21. High temperature thermal behaviour. Polymer, 27, 91–95.

    Article  CAS  Google Scholar 

  37. Xue, Y., Li, X., Li, H., & Zhang, W. (2014). Quantifying thiol–gold interactions towards the efficient strength control. Nature Communications, 5, 4348.

    Article  CAS  PubMed  Google Scholar 

  38. Trzciński, J. W., Morillas-Becerril, L., Scarpa, S., Tannorella, M., Muraca, F., Rastrelli, F., Castellani, C., Fedrigo, M., Angelini, A., Tavano, R., Papini, E., & Mancin, F. (2021). Poly(lipoic acid)-based nanoparticles as self-organized, biocompatible, and corona-free nanovectors. Biomacromolecules, 22, 467–480.

    Article  PubMed  Google Scholar 

  39. Dzwonek, M., Załubiniak, D., Piątek, P., Cichowicz, G., Męczynska-Wielgosz, S., Stępkowski, T., Kruszewski, M., Więckowska, A., & Bilewicz, R. (2018). Towards potent but less toxic nanopharmaceuticals – lipoic acid bioconjugates of ultrasmall gold nanoparticles with an anticancer drug and addressing unit. RSC Advances, 8, 14947–14957.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Sciences and Engineering Research Council, the Canada Foundation for Innovation and the Canada Research Chairs program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan C. Scaiano.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1521 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cely-Pinto, M., Wang, B. & Scaiano, J.C. Understanding α-lipoic acid photochemistry helps to control the synthesis of plasmonic gold nanostructures. Photochem Photobiol Sci 22, 1299–1307 (2023). https://doi.org/10.1007/s43630-023-00378-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43630-023-00378-5

Navigation