Skip to main content

Advertisement

Log in

A simple Norrish Type II actinometer for flow photoreactions

  • Original Papers
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

This contribution addresses a frequent problem in flow photochemistry, where methodologies to determine the quantum efficiency of photoreactions are totally lacking. In spite of numerous studies being available in the literature, product reaction yields are never accompanied by measurements to determine their quantum yields. Basically, the key reagent in the reaction, light, is not measured under the experimental conditions of exposure. We report here a flow actinometer based on the photochemistry of valerophenone that can be readily implemented in the organic laboratory for irradiations in the UV region. For example for UVB lamps used in our work, the irradiance was measured as 1.1 × 10–4 einstein l−1 s−1. Our photoreactor design involves wrapping low-pressure lamps with Teflon tubbing, where the photochemistry takes place. Similar strategies could be implemented with other geometries or with lamps (e.g. LED) and actinometers with sensitivity in other spectral regions.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Scheme 2

Similar content being viewed by others

Data availability

Original data are available from the corresponding author upon reasonable request.

References

  1. Scaiano, J. C. T. (2022). Photochemistry essentials. American Chemical Society.

    Google Scholar 

  2. Rabani, J., Mamane, H., Pousty, D., & Bolton, J. R. (2021). Practical chemical actinometry—a review. Photochemistry and Photobiology, 97, 873–902.

    Article  CAS  PubMed  Google Scholar 

  3. Wagner, P. J., Kelso, P. A., Kemppainen, A. E., McGrath, J. M., Schott, H. N., & Zepp, R. G. (1972). Type II photoprocesses of Phenyl Ketones. A Glimpse at the behavior of 1,4 Biradicals. Journal of the American Chemical Society, 94, 7506–7512.

    Article  CAS  Google Scholar 

  4. Pitre, S. P., McTiernan, C. D., Vine, W., DiPucchio, R., Grenier, M., & Scaiano, J. C. (2015). Visible-light actinometry and intermittent illumination as convenient tools to study Ru(bpy)3Cl2 mediated photoredox transformations. Scientific Reports, 5, 16397.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hatchard, C. G., & Parker, C. A. (1956). A new sensitive chemical actinometer—II. Potassium ferrioxalate as a standard chemical actinometer. Proceedings of the Royal Society of London Series A, 325, 518–536.

    Google Scholar 

  6. Wagner, P. J. (1971). Type II photoelimination and photocyclization of ketones. Accounts of Chemical Research, 4, 168–177.

    Article  CAS  Google Scholar 

  7. Wagner, P. J., Kochevar, I. E., & Kemppainen, A. E. (1972). Type II photoprocesses of phenyl ketones. Procedures for determining meaningful quantum yields and triplet lifetimes. Journal of the American Chemical Society, 94, 7489–7494.

    Article  CAS  Google Scholar 

  8. Small, R. D., Jr., & Scaiano, J. C. (1977). Interaction of oxygen with transient biradicals photogenerated from g-Methylvalerophenone. Chemical Physics Letters, 48, 354.

    Article  CAS  Google Scholar 

  9. Small, R. D., Jr., & Scaiano, J. C. (1978). Differentiation of excited state and biradical processes. Photochemistry of phenyl alkyl ketones in the presence of oxygen. Journal of the American Chemical Society, 100, 4512.

    Article  CAS  Google Scholar 

  10. Roibu, A., Fransen, S., Leblebici, M. E., Meir, G., Van Gerven, T., & Kuhn, S. (2018). An accessible visible-light actinometer for the determination of photon flux and optical pathlength in flow photo microreactors. Scientific Reports, 8, 5421.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Vandekerckhove, B., Piens, N., Metten, B., Stevens, C. V., & Heugebaert, T. S. A. (2022). Practical ferrioxalate actinometry for the determination of photon fluxes in production-oriented photoflow reactors. Organic Process Research & Development, 26, 2392–2402.

    Article  CAS  Google Scholar 

  12. El Achi, N., Bakkour, Y., Chausset-Boissarie, L., Penhoat, M., & Rolando, C. (2017). Rapid and facile chemical actinometric protocol for photo-microfluidic systems using azobenzene and NMR spectroscopy. RSC Advances, 7, 29815–29820.

    Article  Google Scholar 

  13. Aillet, T., Loubiere, K., Dechy-Cabaret, O., & Prat, L. (2014). Accurate measurement of the photon flux received inside two continuous flow microphotoreactors by actinometry. International Journal of Chemical Reactor Engineering, 12, 257–269.

    Article  Google Scholar 

  14. Rehm, T. H. (2020). Flow photochemistry as a tool in organic synthesis. Chemistry--A European Journal, 26, 16952–16974.

    Article  CAS  PubMed  Google Scholar 

  15. Cambié, D., Bottecchia, C., Straathof, N. J. W., Hessel, V., & Noël, T. (2016). Applications of continuous-flow photochemistry in organic synthesis, material science, and water treatment. Chemical Reviews, 116, 10276–10341.

    Article  PubMed  Google Scholar 

  16. Wagner, P. J., Kelso, P. A., & Zepp, R. G. (1972). Type II photoprocesses of Phenyl Ketones. Evidence for a biradical intermediate. Journal of the American Chemical Society, 94, 7480–7488.

    Article  CAS  Google Scholar 

  17. Turro, N. J., Ramamurthy, V., & Scaiano, J. C. (2010). Modern molecular photochemistry of organic molecules. University Science Publishers.

    Google Scholar 

  18. Braslavsky, S. E. (2007). Glossary of terms used in photochemistry. Pure and Applied Chemistry, 79, 293–465.

    Article  CAS  Google Scholar 

  19. Wriedt, B., & Ziegenbalg, D. (2020). Common pitfalls in chemical actinometry. Journal of Flow Chemistry, 10, 295–306.

    Article  Google Scholar 

  20. Gessner, F., & Scaiano, J. C. (1985). Importance of entropic terms in triplet energy transfer equilibria. Journal of the American Chemical Society, 107, 7206–7207.

    Article  CAS  Google Scholar 

  21. Shrestha, N. K., Yagi, E. J., Takatori, Y., Kawai, A., Kajii, Y., Shibuya, K., & Obi, K. (1998). Photochemical α-cleavage reaction of benzoin and its derivatives. Journal of Photochemistry and Photobiology, A: Chemistry, 116, 179–185.

    Article  CAS  Google Scholar 

  22. Lewis, F. D., Lauterbach, R. T., Heine, H. G., Hartmann, W., & Rudolph, H. (1975). Photochemical α-cleavage of benzoin derivatives Polar transition states for free-radical formation. Journal of the American Chemical Society, 97, 1519–1525.

    Article  CAS  Google Scholar 

  23. Scaiano, J. C., Billone, P., Gonzalez, C. M., Maretti, L., Marin, M. L., McGilvray, K. L., & Yuan, N. (2009). Photochemical routes to silver and gold nanoparticles. Pure and Applied Chemistry, 81, 635–647.

    Article  CAS  Google Scholar 

  24. McGilvray, K. L., Decan, M. R., Wang, D., & Scaiano, J. C. (2006). Facile photochemical synthesis of unprotected aqueous gold nanoparticles. Journal of the American Chemical Society, 128, 15980–15981.

    Article  CAS  PubMed  Google Scholar 

  25. Jockusch, S., Landis, M. S., Freiermuth, B., & Turro, N. J. (2001). Photochemistry and photophysics of a-hydroxy ketones. Macromolecules, 34, 1619–1626.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Sciences and Engineering Research Council, the Canada Foundation for Innovation and the Canada Research Chairs program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan C. Scaiano.

Ethics declarations

Conflict of interest

There are no conflicts of interest to declare.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 4245 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yaghmaei, M., Scaiano, J.C. A simple Norrish Type II actinometer for flow photoreactions. Photochem Photobiol Sci 22, 1865–1874 (2023). https://doi.org/10.1007/s43630-023-00417-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43630-023-00417-1

Navigation