Skip to main content

Advertisement

Log in

Photobiomodulation and vitamin B treatment alleviate both thermal and mechanical orofacial pain in rats

  • Original Papers
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Purpose

The present study investigates the efficacy of Photobiomodulation (PBM) and Vitamin B Complex (VBC) to relieve pain, both in separately and combined (PBM and VBC).

Methods

Rats with chronic constriction injury of the right infraorbital nerve (CCI-IoN) or Sham surgery were used. PBM was administered at a wavelength of 904 nm and energy density of 6.23 J/cm2 and VBC (containing B1, B6 and B12) subcutaneously, both separately and combined. Behavioral tests were performed to assess mechanical and thermal hypersensitivity before and after CCI and after PBM, VBC, or PBM + VBC. The expression of inflammatory proteins in the trigeminal ganglion and the immunohistochemical alterations of Periaqueductal Gray (PAG) astrocytes and microglia were examined following CCI and treatments.

Results

All testeds treatments reversed the painful behavior. The decrease in pain was accompanied by a decrease of Glial Fibrillary Acidic Protein (GFAP), a specific astrocytic marker, and Ionized calcium-binding adaptor molecule 1 (Iba-1), a marker of microglia, and decreased expression of Transient Receptor Potential Vanilloid 1 (TRPV1), Substance P, and Calcitonin Gene-Related Peptide (CGRP) induced by CCI-IoN in PAG and Trigeminal ganglion. Furthermore, both treatments showed a higher expression of Cannabinoid-type 1 (CB1) receptor in the trigeminal ganglion compared to CCI-IoN rats. Our results show that no difference was observed between groups.

Conclusion

We showed that PBM or VBC regulates neuroinflammation and reduces inflammatory protein expression. However, the combination of PBM and VBC did not enhance the effectiveness of both therapies alone.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Talbot, K., Madden, V. J., Jones, S. L., & Moseley, G. L. (2019). The sensory and affective components of pain: Are they differentially modifiable dimensions or inseparable aspects of a unitary experience? A systematic review. British Journal of Anaesthesia, 123(2), e263–e272.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Maarbjerg, S., Di Stefano, G., Bendtsen, L., & Cruccu, G. (2017). Trigeminal neuralgia—Diagnosis and treatment. Cephalalgia, 37(7), 648–657. https://doi.org/10.1177/0333102416687280

    Article  PubMed  Google Scholar 

  3. Merrill, R. L. (2007). Central mechanisms of orofacial pain. Dental Clinics of North America, 51(1), 45–59.

    Article  PubMed  Google Scholar 

  4. Martins, D. O., Marques, D. P., Venega, R. A. G., & Chacur, M. (2020). Photobiomodulation and B vitamins administration produces antinociception in an orofacial pain model through the modulation of glial cells and cytokines expression. Brain, Behavior, & Immunity—Health. https://doi.org/10.1016/j.bbih.2020.100040

    Article  Google Scholar 

  5. Coelho, S. C., Bastos-Pereira, A. L., Fraga, D., Chichorro, J. G., & Zampronio, A. R. (2014). Etanercept reduces thermal and mechanical orofacial hyperalgesia following inflammation and neuropathic injury. European Journal of Pain, 18(7), 957–967. https://doi.org/10.1002/j.1532-2149.2013.00441.x

    Article  CAS  PubMed  Google Scholar 

  6. Urano, H., Ara, T., Fujinami, Y., & Hiraoka, B. Y. (2012). Aberrant TRPV1 expression in heat hyperalgesia associated with trigeminal neuropathic pain. International Journal of Medical Sciences, 9(8), 690–697. https://doi.org/10.7150/ijms.4706

    Article  PubMed  PubMed Central  Google Scholar 

  7. Shinoda, M., Kawashima, K., Ozaki, N., Asai, H., Nagamine, K., & Sugiura, Y. (2007). P2X3 receptor mediates heat hyperalgesia in a rat model of trigeminal neuropathic pain. The Journal of Pain, 8(7), 588–597.

    Article  CAS  PubMed  Google Scholar 

  8. Lemos, L., Alegria, C., Oliveira, J., Machado, A., Oliveira, P., & Almeida, A. (2011). Pharmacological versus microvascular decompression approaches for the treatment of trigeminal neuralgia: Clinical outcomes and direct costs. Journal of Pain Research, 4, 233–244. https://doi.org/10.2147/JPR.S20555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lazzaroni, M., & Bianchi Porro, G. (2004). Gastrointestinal side-effects of traditional non-steroidal anti-inflammatory drugs and new formulations. Alimentary Pharmacology & Therapeutics, 20(Suppl 2), 48–58. https://doi.org/10.1111/j.1365-2036.2004.02037.x

    Article  CAS  Google Scholar 

  10. De Toledo, I. P., Conti Réus, J., Fernandes, M., Porporatti, A. L., Peres, M. A., Takaschima, A., Linhares, M. N., Guerra, E., & De Luca Canto, G. (2016). Prevalence of trigeminal neuralgia: A systematic review. The Journal of the American Dental Association, 147(7), 570–576.

    Article  PubMed  Google Scholar 

  11. Holland, M., Noeller, J., Buatti, J., He, W., Shivapour, E. T., & Hitchon, P. W. (2015). The cost-effectiveness of surgery for trigeminal neuralgia in surgically naïve patients: A retrospective study. Clinical Neurology and Neurosurgery, 137, 34–37.

    Article  PubMed  Google Scholar 

  12. Martins, D. O., Santos, F. M., Britto, L. R., Lemos, J. B., & Chacur, M. (2017). Neurochemical effects of photobiostimulation in the trigeminal ganglion after inferior alveolar nerve injury. Journal of biological regulators and homeostatic agents, 31(1), 147–152.

    CAS  PubMed  Google Scholar 

  13. Wu, S., Chen, Y., Zhang, J., Chen, W., Shao, S., Shen, H., Zhu, L., Ye, P., Svensson, P., & Wang, K. (2018). Effect of low-level laser therapy on tooth-related pain and somatosensory function evoked by orthodontic treatment. International Journal of Oral Science, 10(3), 018–0023.

    Article  Google Scholar 

  14. de Freitas Rodrigues, A., de Oliveira Martins, D., Chacur, M., & Luz, J. G. C. (2020). The effectiveness of photobiomodulation in the management of temporomandibular pain sensitivity in rats: Behavioral and neurochemical effects. Lasers in Medical Science, 35(2), 447–453. https://doi.org/10.1007/s10103-019-02842-0

    Article  PubMed  Google Scholar 

  15. Mazuqueli Pereira, E. S. B., Basting, R. T., Abdalla, H. B., Garcez, A. S., Napimoga, M. H., & Clemente-Napimoga, J. T. (2021). Photobiomodulation inhibits inflammation in the temporomandibular joint of rats. Journal of Photochemistry and Photobiology B: Biology, 222(112281), 5.

    Google Scholar 

  16. Kalhori, K. A. M., Vahdatinia, F., Jamalpour, M. R., Vescovi, P., Fornaini, C., Merigo, E., & Fekrazad, R. (2019). Photobiomodulation in oral medicine. Photobiomodulation, Photomedicine, and Laser Surgery, 37(12), 837–861.

    Article  PubMed  Google Scholar 

  17. Han, D. S., Lee, C. H., Shieh, Y. D., & Chen, C. C. (2019). Involvement of substance P in the analgesic effect of low-level laser therapy in a mouse model of chronic widespread muscle pain. Pain Medicine. https://doi.org/10.1093/pm/pnz056

    Article  PubMed  PubMed Central  Google Scholar 

  18. de Oliveira Martins, D., Martinez dos Santos, F., Evany de Oliveira, M., de Britto, L. R., Benedito Dias Lemos, J., & Chacur, M. (2013). Laser therapy and pain-related behavior after injury of the inferior alveolar nerve: Possible involvement of neurotrophins. Journal of Neurotrauma, 30(6), 480–486. https://doi.org/10.1089/neu.2012.2603

    Article  PubMed  PubMed Central  Google Scholar 

  19. Martins, D. O., Dos Santos, F. M., Ciena, A. P., Watanabe, I. S., de Britto, L. R., Lemos, J. B., & Chacur, M. (2017). Neuropeptide expression and morphometric differences in crushed alveolar inferior nerve of rats: Effects of photobiomodulation. Lasers in Medical Science. https://doi.org/10.1007/s10103-017-2181-2

    Article  PubMed  Google Scholar 

  20. Kopruszinski, C. M., Reis, R. C., & Chichorro, J. G. (2012). B vitamins relieve neuropathic pain behaviors induced by infraorbital nerve constriction in rats. Life Sciences, 91(23–24), 1187–1195. https://doi.org/10.1016/j.lfs.2012.08.025

    Article  CAS  PubMed  Google Scholar 

  21. Yu, C. Z., Liu, Y. P., Liu, S., Yan, M., Hu, S. J., & Song, X. J. (2014). Systematic administration of B vitamins attenuates neuropathic hyperalgesia and reduces spinal neuron injury following temporary spinal cord ischaemia in rats. European Journal of Pain, 18(1), 76–85. https://doi.org/10.1002/j.1532-2149.2013.00390.x

    Article  CAS  PubMed  Google Scholar 

  22. Caram-Salas, N. L., Reyes-Garcia, G., Medina-Santillan, R., & Granados-Soto, V. (2006). Thiamine and cyanocobalamin relieve neuropathic pain in rats: Synergy with dexamethasone. Pharmacology, 77(2), 53–62. https://doi.org/10.1159/000092643

    Article  CAS  PubMed  Google Scholar 

  23. Zeng, X., Zhang, L., Sun, L., Zhang, D., Zhao, H., Jia, J., & Wang, W. (2013). Recovery from rat sciatic nerve injury in vivo through the use of differentiated MDSCs in vitro. Experimental and Therapeutic Medicine, 5(1), 193–196. https://doi.org/10.3892/etm.2012.785

    Article  PubMed  Google Scholar 

  24. Levin, O. S., & Moseikin, I. A. (2009). Vitamin B complex (milgamma) in the treatment of vertebrogenic lumbosacral radiculopathy. Zhurnal Nevrologii i Psikhiatrii Imeni S.S. Korsakova, 109(10), 30–35.

    CAS  PubMed  Google Scholar 

  25. Buljubašić, R., Vucicevic Boras, V., A. L., T, K., A, K., Vidović Juras, D., & V. Brailo. (2018). The effectiveness of low level laser therapy and vitamin B injections in patients with mental paraesthesia after third molar surgery.

  26. Abdel-Alim, H. M., Abdel-Dayem, H., Mustafa, Z. A., Bayoumi, A., Jan, A., & Jadu, F. (2015). A comparative study of the effectiveness of immediate versus delayed photobiomodulation therapy in reducing the severity of postoperative inflammatory complications. Photomedicine and Laser Surgery, 33(9), 447–451.

    Article  PubMed  Google Scholar 

  27. Leung, Y. Y. (2019). Management and prevention of third molar surgery-related trigeminal nerve injury: Time for a rethink. Journal of the Korean Association of Oral and Maxillofacial Surgeons, 45(5), 233–240.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Zimmermann, M. (1983). Ethical guidelines for investigations of experimental pain in conscious animals. Pain, 16(2), 109–110.

    Article  PubMed  Google Scholar 

  29. Chichorro, J. G., Zampronio, A. R., Souza, G. E., & Rae, G. A. (2006). Orofacial cold hyperalgesia due to infraorbital nerve constriction injury in rats: Reversal by endothelin receptor antagonists but not non-steroidal anti-inflammatory drugs. Pain, 123(1–2), 64–74. https://doi.org/10.1016/j.pain.2006.02.010

    Article  CAS  PubMed  Google Scholar 

  30. Reinagel, P. (2018). Training rats using water rewards without water restriction. Frontiers in Behavioral Neuroscience. https://doi.org/10.3389/fnbeh.2018.00084

    Article  PubMed  PubMed Central  Google Scholar 

  31. Neubert, J. K., Widmer, C. G., Malphurs, W., Rossi, H. L., Vierck, C. J., Jr., & Caudle, R. M. (2005). Use of a novel thermal operant behavioral assay for characterization of orofacial pain sensitivity. Pain, 116(3), 386–395. https://doi.org/10.1016/j.pain.2005.05.011

    Article  PubMed  Google Scholar 

  32. Cha, M., Kohan, K. J., Zuo, X., Ling, J. X., & Gu, J. G. (2012). Assessment of chronic trigeminal neuropathic pain by the orofacial operant test in rats. Behavioural Brain Research, 234(1), 82–90. https://doi.org/10.1016/j.bbr.2012.06.020

    Article  PubMed  PubMed Central  Google Scholar 

  33. Bai, S. S., Mo, S. Y., Xu, X. X., Liu, Y., Xie, Q. F., & Cao, Y. (2020). Characteristics of orofacial operant test for orofacial pain sensitivity caused by occlusal interference in rats. Beijing Da Xue Xue Bao Yi Xue Ban, 52(1), 51–57.

    CAS  PubMed  Google Scholar 

  34. Ang, C. D., Alviar, M. J., Dans, A. L., Bautista-Velez, G. G., Villaruz-Sulit, M. V., Tan, J. J., Co, H. U., Bautista, M. R., & Roxas, A. A. (2008). Vitamin B for treating peripheral neuropathy. Cochrane Database of Systematic Reviews. https://doi.org/10.1002/14651858.CD004573.pub3

    Article  PubMed  Google Scholar 

  35. Wang, Z. B., Gan, Q., Rupert, R. L., Zeng, Y. M., & Song, X. J. (2005). Thiamine, pyridoxine, cyanocobalamin and their combination inhibit thermal, but not mechanical hyperalgesia in rats with primary sensory neuron injury. Pain, 114(1–2), 266–277. https://doi.org/10.1016/j.pain.2004.12.027

    Article  CAS  PubMed  Google Scholar 

  36. Jolivalt, C. G., Mizisin, L. M., Nelson, A., Cunha, J. M., Ramos, K. M., Bonke, D., & Calcutt, N. A. (2009). B vitamins alleviate indices of neuropathic pain in diabetic rats. European Journal of Pharmacology, 612(1–3), 41–47.

    Article  CAS  PubMed  Google Scholar 

  37. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.

    Article  CAS  PubMed  Google Scholar 

  38. Paxinos, G. A., & Watson, C. (2013). The rat brain in stereotaxic coordinates (7th ed., p. 472). Academic Press.

    Google Scholar 

  39. Snedecor, G. W., Sokal, R. R., & Rohlf, F. J. (1946) Statistical methods biometry, 4 edn. In: Ames, (ed.). W.H. Freeman & Co., Owa State University Pres.

  40. Porreca, F., & Navratilova, E. (2017). Reward, motivation, and emotion of pain and its relief. Pain, 158(Suppl 1), S43–S49. https://doi.org/10.1097/j.pain.0000000000000798

    Article  PubMed  PubMed Central  Google Scholar 

  41. Matsuka, Y., Ono, T., Iwase, H., Mitrirattanakul, S., Omoto, K. S., Cho, T., Lam, Y. Y., Snyder, B., & Spigelman, I. (2008). Altered ATP release and metabolism in dorsal root ganglia of neuropathic rats. Molecular Pain, 4, 66. https://doi.org/10.1186/1744-8069-4-66

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Sacerdote, P., Franchi, S., Trovato, A. E., Valsecchi, A. E., Panerai, A. E., & Colleoni, M. (2008). Transient early expression of TNF-α in sciatic nerve and dorsal root ganglia in a mouse model of painful peripheral neuropathy. Neuroscience Letters, 436(2), 210–213. https://doi.org/10.1016/j.neulet.2008.03.023

    Article  CAS  PubMed  Google Scholar 

  43. González-Ramírez, R., Chen, Y., Liedtke, W. B., & Morales-Lázaro, S. L. (2017). TRP channels and pain. In T. L. R. Emir (Ed.), Neurobiology of TRP channels (2nd ed.). CRC Press/Taylor & Francis.

    Google Scholar 

  44. Zieglgänsberger, W. (2019). Substance P and pain chronicity. Cell and Tissue Research, 375(1), 227–241.

    Article  PubMed  Google Scholar 

  45. Zhang, H., Cang, C. L., Kawasaki, Y., Liang, L. L., Zhang, Y. Q., Ji, R. R., & Zhao, Z. Q. (2007). Neurokinin-1 receptor enhances TRPV1 activity in primary sensory neurons via PKCepsilon: A novel pathway for heat hyperalgesia. Journal of Neuroscience, 27(44), 12067–12077. https://doi.org/10.1523/JNEUROSCI.0496-07.2007

    Article  CAS  PubMed  Google Scholar 

  46. Bridges, D., Ahmad, K., & Rice, A. S. (2001). The synthetic cannabinoid WIN55,212–2 attenuates hyperalgesia and allodynia in a rat model of neuropathic pain. British Journal of Pharmacology, 133(4), 586–594.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Tsou, K., Brown, S., Sañudo-Peña, M. C., Mackie, K., & Walker, J. M. (1998). Immunohistochemical distribution of cannabinoid CB1 receptors in the rat central nervous system. Neuroscience, 83(2), 393–411.

    Article  CAS  PubMed  Google Scholar 

  48. Ahluwalia, J., Urban, L., Bevan, S., & Nagy, I. (2003). Anandamide regulates neuropeptide release from capsaicin-sensitive primary sensory neurons by activating both the cannabinoid 1 receptor and the vanilloid receptor 1 in vitro. European Journal of Neuroscience, 17(12), 2611–2618.

    Article  PubMed  Google Scholar 

  49. Németh, J., Helyes, Z., Thán, M., Jakab, B., Pintér, E., & Szolcsányi, J. (2003). Concentration-dependent dual effect of anandamide on sensory neuropeptide release from isolated rat tracheae. Neuroscience Letters, 336(2), 89–92.

    Article  PubMed  Google Scholar 

  50. Linley, J. E., Ooi, L., Pettinger, L., Kirton, H., Boyle, J. P., Peers, C., & Gamper, N. (2012). Reactive oxygen species are second messengers of neurokinin signaling in peripheral sensory neurons. Proceedings of the National Academy of Sciences of the United States of America, 109(24), E1578–E1586. https://doi.org/10.1073/pnas.1201544109

    Article  PubMed  PubMed Central  Google Scholar 

  51. Volterra, A., & Meldolesi, J. (2005). Astrocytes, from brain glue to communication elements: The revolution continues. Nature Reviews Neuroscience, 6(8), 626–640. https://doi.org/10.1038/nrn1722

    Article  CAS  PubMed  Google Scholar 

  52. Mayer, D. J., & Liebeskind, J. C. (1974). Pain reduction by focal electrical stimulation of the brain: An anatomical and behavioral analysis. Brain Research, 68(1), 73–93. https://doi.org/10.1016/0006-8993(74)90534-4

    Article  CAS  PubMed  Google Scholar 

  53. Basbaum, A. I., & Fields, H. L. (1978). Endogenous pain control mechanisms: Review and hypothesis. Annals of Neurology, 4(5), 451–462. https://doi.org/10.1002/ana.410040511

    Article  CAS  PubMed  Google Scholar 

  54. Giardini, A. C., Dos Santos, F. M., da Silva, J. T., de Oliveira, M. E., Martins, D. O., & Chacur, M. (2017). Neural Mobilization treatment decreases glial cells and brain-derived neurotrophic factor expression in the central nervous system in rats with neuropathic pain induced by CCI in rats. Pain Research & Management, 2017, 7429761. https://doi.org/10.1155/2017/7429761

    Article  Google Scholar 

  55. Dubovy, P., Klusakova, I., Hradilova-Svizenska, I., Joukal, M., & Boadas-Vaello, P. (2018). Activation of astrocytes and microglial cells and CCL2/CCR2 upregulation in the dorsolateral and ventrolateral nuclei of periaqueductal gray and rostral ventromedial medulla following different types of sciatic nerve injury. Frontiers in Cellular Neuroscience, 12, 40. https://doi.org/10.3389/fncel.2018.00040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Becker, S., Gandhi, W., & Schweinhardt, P. (2012). Cerebral interactions of pain and reward and their relevance for chronic pain. Neuroscience Letters, 520(2), 182–187. https://doi.org/10.1016/j.neulet.2012.03.013

    Article  CAS  PubMed  Google Scholar 

  57. Navratilova, E., Morimura, K., Xie, J. Y., Atcherley, C. W., Ossipov, M. H., & Porreca, F. (2016). Positive emotions and brain reward circuits in chronic pain. The Journal of Comparative Neurology, 524(8), 1646–1652. https://doi.org/10.1002/cne.23968

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was financially supported by the Brazilian funding agency, Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), Grant number—2015/24256-0; 2014/24533-0; 2017/05218-5, by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Grant number—157284/2017-4; 405853/2018-1, and by Fundação de Amparo à Pesquisa do Estado de São Paulo, Grant number—2021/02897-4. The funding agencies play no role in the design of the study, data collection, analysis, interpretation of the data, or in writing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Oliveira Martins.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marques, D.P., Chacur, M. & Martins, D.O. Photobiomodulation and vitamin B treatment alleviate both thermal and mechanical orofacial pain in rats. Photochem Photobiol Sci 22, 2315–2327 (2023). https://doi.org/10.1007/s43630-023-00452-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43630-023-00452-y

Keywords

Navigation