Skip to main content
Log in

Synergistic effect of ball milling time and nano-sized Y2O3 addition on hardening of Cu-based nanocomposites

  • Original Article
  • Published:
Archives of Civil and Mechanical Engineering Aims and scope Submit manuscript

Abstract

A fruitful combination of powder metallurgy and the mechanical alloying route is one of the most promising process for producing advanced Cu-based nanocomposites. In this study, three different material systems, namely, pure copper (Cu), 5 wt% Cr reinforced Cu matrix composites, and 1 wt% Y2O3 reinforced Cu–Cr matrix nanocomposites were synthesized by ball milling method at different milling times. The influence of different ball milling times (0.5, 2, and 4 h) and different types of reinforcements (Cr and Y2O3) on the powder and sintered parts properties were thoroughly analyzed with a holistic approach. The milled powders were then consolidated using a cold press followed by a liquid phase sintering process. Results revealed that the Cr and Y2O3 particles were fractionally dispersed and imbedded in the ductile Cu matrix with respect to increasing milling time. Milling for 4 h of Cu–Cr–Y2O3 powders produced the lowest level of particle size (28 µm) with reduced and flattened and uniformly distributed reinforcement phases due to intense plastic deformation induced shearing effect and dominant powder-ball-jar collisions. Besides, the ball milling process of the same powders concluded a decrement of crystallite size to 35 nm in concomitant with an increase of lattice strain and dislocation density ⁓ % 0.3 and 0.8 × 1015 line/m2, respectively. Brinell hardness of the sample produced by these powders increased from 39 to 95 HB. A ⁓%145 striking increase of hardness could be attributed to the strong hindrance of high-dense dislocations triggered by several concurrent strengthening mechanisms. Nevertheless, relative density results of sintered samples revealed that the addition of Cr and Y2O3 along with increasing milling time deteriorated the density due to the higher hardness and brittleness of milled powders and accompanying worsened compressibility and sinterability. The source of noticed differences between hardness and density results were discussed within the process-structure-performance framework.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Availability of data and materials

Not applicable.

References

  1. Şap S, Turgut A, Uzun M. Investigation of microstructure and mechanical properties of Cu/Ti–B–SiCp hybrid composites. Ceram Int. 2021;47:29919–29.

    Article  Google Scholar 

  2. Şap S, Uzun M, Usca ÜA, Pimenov DY, Giasin K, Wojciechowski S. Investigation on microstructure, mechanical, and tribological performance of Cu base hybrid composite materials. J Market Res. 2021;15:6990–7003.

    Google Scholar 

  3. Chakraborty S, Gupta A, Roy D, Basumallick A. Studies on nano-metal dispersed Cu–Cr matrix composite. Mater Lett. 2019;257: 126739.

    Article  CAS  Google Scholar 

  4. Yang H, Ma Z, Lei C, Meng L, Fang Y, Liu J, Wang H. High strength and high conductivity Cu alloys: a review. Sci China Technol Sci. 2020;63:2505–17.

    Article  CAS  ADS  Google Scholar 

  5. Li J, Ding H, Li B, Gao W, Bai J, Sha G. Effect of Cr and Sn additions on microstructure, mechanical-electrical properties and softening resistance of Cu–Cr–Sn alloy. Mater Sci Eng A. 2021;802: 140628.

    Article  CAS  Google Scholar 

  6. Pillari LK, Bakshi SR, Chaudhuri P, Murty B. Fabrication of W-Cu functionally graded composites using high energy ball milling and spark plasma sintering for plasma facing components. Adv Powder Technol. 2020;31:3657–66.

    Article  CAS  Google Scholar 

  7. Qu X-H, Zhang L, Mao W, Ren S-B. Review of metal matrix composites with high thermal conductivity for thermal management applications. Prog Nat Sci Mater Int. 2011;21:189–97.

    Article  Google Scholar 

  8. Sap E. Microstructural and mechanical properties of Cu-based Co-Mo-reinforced composites produced by the powder metallurgy method. J Mater Eng Perform. 2020;29:8461–72.

    Article  CAS  Google Scholar 

  9. Şap E. Investigation of mechanical properties of Cu/Mo-SiCp composites produced with P/M, and their wear behaviour with the Taguchi method. Ceram Int. 2021. https://doi.org/10.1016/j.ceramint.2021.05.322.

    Article  Google Scholar 

  10. Kim KT, Cha SI, Hong SH, Hong SH. Microstructures and tensile behavior of carbon nanotube reinforced Cu matrix nanocomposites. Mater Sci Eng, A. 2006;430:27–33.

    Article  Google Scholar 

  11. Ying D, Zhang D. Processing of Cu–Al2O3 metal matrix nanocomposite materials by using high energy ball milling. Mater Sci Eng, A. 2000;286:152–6.

    Article  Google Scholar 

  12. Salur E, Acarer M, Şavkliyildiz İ. Improving mechanical properties of nano-sized TiC particle reinforced AA7075 Al alloy composites produced by ball milling and hot pressing. Mater Today Commun. 2021;27: 102202.

    Article  CAS  Google Scholar 

  13. Tekin M, Polat G, Kalay YE, Kotan H. Grain size stabilization of oxide dispersion strengthened CoCrFeNi-Y2O3 high entropy alloys synthesized by mechanical alloying. J Alloys Compd. 2021;887: 161363.

    Article  CAS  Google Scholar 

  14. Salur E, Nazik C, Acarer M, Şavklıyıldız İ, Akdoğan EK. Ultrahigh hardness in Y2O3 dispersed ferrous multicomponent nanocomposites. Mater Today Commun. 2021;28: 102637.

    Article  CAS  Google Scholar 

  15. Zimo G, Hao Y, Diancheng G, Yuchen L, Kondo S, Okuno Y, Kasada R. Effects of zirconium addition on the material properties and microstructure of ODS-Cu alloys. J Alloys Compd. 2021;899: 163328.

    Google Scholar 

  16. Aghamiri S, Oono N, Ukai S, Kasada R, Noto H, Hishinuma Y, Muroga T. Microstructure and mechanical properties of mechanically alloyed ODS copper alloy for fusion material application. Nucl Mater Energy. 2018;15:17–22.

    Article  Google Scholar 

  17. Li G, Thomas BG, Stubbins J. Modeling creep and fatigue of copper alloys. Metall and Mater Trans A. 2000;31:2491–502.

    Article  Google Scholar 

  18. Salur E, Aslan A, Kuntoğlu M, Acarer M. Effect of ball milling time on the structural characteristics and mechanical properties of nano-sized Y2O3 particle reinforced aluminum matrix composites produced by powder metallurgy route. Adv Powder Technol. 2021;32:3826–44.

    Article  CAS  Google Scholar 

  19. Williamson G, Smallman R III. Dislocation densities in some annealed and cold-worked metals from measurements on the X-ray debye-scherrer spectrum. Philos Mag. 1956;1:34–46.

    Article  CAS  ADS  Google Scholar 

  20. Krivoglaz MA. X-ray and neutron diffraction in nonideal crystals. Berlin: Springer Science & Business Media; 2012.

    Google Scholar 

  21. Uzun M, Usca UA. Effect of Cr particulate reinforcements in different ratios on wear performance and mechanical properties of Cu matrix composites. J Braz Soc Mech Sci Eng. 2018;40:1–9.

    Article  CAS  Google Scholar 

  22. Akbarpour M, Mirabad HM, Alipour S, Kim H. Enhanced tensile properties and electrical conductivity of Cu-CNT nanocomposites processed via the combination of flake powder metallurgy and high pressure torsion methods. Mater Sci Eng A. 2020;773: 138888.

    Article  CAS  Google Scholar 

  23. Varol T, Canakci A. The effect of type and ratio of reinforcement on the synthesis and characterization Cu-based nanocomposites by flake powder metallurgy. J Alloy Compd. 2015;649:1066–74.

    Article  CAS  Google Scholar 

  24. Fathy A, Wagih A, Abu-Oqail A. Effect of ZrO2 content on properties of Cu-ZrO2 nanocomposites synthesized by optimized high energy ball milling. Ceram Int. 2019;45:2319–29.

    Article  CAS  Google Scholar 

  25. Fan G, Jiang Y, Tan Z, Guo Q, Xiong D-B, Su Y, Lin R, Hu L, Li Z, Zhang D. Enhanced interfacial bonding and mechanical properties in CNT/Al composites fabricated by flake powder metallurgy. Carbon. 2018;130:333–9.

    Article  CAS  Google Scholar 

  26. Biçer H, Akdoğan EK, Şavklıyıldız İ, Haines C, Zhong Z, Tsakalakos T. Thermal expansion of nano–boron carbide under constant DC electric field: an in situ energy dispersive X-ray diffraction study using a synchrotron probe. J Mater Res. 2020;35:90–7.

    Article  ADS  Google Scholar 

  27. Mokdad F, Chen D, Liu Z, Xiao B, Ni D, Ma Z. Deformation and strengthening mechanisms of a carbon nanotube reinforced aluminum composite. Carbon. 2016;104:64–77.

    Article  CAS  Google Scholar 

  28. Abu-Okail M, Shewakh W, Brisha AM, Abdelraouf YA, Abu-Oqail A. Effect of GNPs content at various compaction pressures and sintering temperatures on the mechanical and electrical properties of hybrid Cu/Al2O3/xGNPs nanocomposites synthesized by high energy ball milling. Ceram Int. 2020;46:18037–45.

    Article  CAS  Google Scholar 

  29. Abu-Oqail A, Wagih A, Fathy A, Elkady O, Kabeel A. Effect of high energy ball milling on strengthening of Cu-ZrO2 nanocomposites. Ceram Int. 2019;45:5866–75.

    Article  CAS  Google Scholar 

  30. Amirthagadeswaran K. Corrosion and wear behaviour of nano Al2O3 reinforced copper metal matrix composites synthesized by high energy ball milling. Particulate Sci Technol. 2020;38:228–35.

    Article  Google Scholar 

  31. Zghal S, Twesten R, Wu F, Bellon P. Electron microscopy nanoscale characterization of ball milled Cu-Ag powders. Part II: nanocomposites synthesized by elevated temperature milling or annealing. Acta Mater. 2002;50:4711–26.

    Article  CAS  ADS  Google Scholar 

  32. Branicio P, Zhang J, Srolovitz D. Effect of strain on the stacking fault energy of copper: a first-principles study. Phys Rev B. 2013;88: 064104.

    Article  ADS  Google Scholar 

  33. Jiang H, Zhu YT, Butt DP, Alexandrov IV, Lowe TC. Microstructural evolution, microhardness and thermal stability of HPT-processed Cu. Mater Sci Eng, A. 2000;290:128–38.

    Article  Google Scholar 

  34. Boytsov O, Ustinov A, Gaffet E, Bernard F. Correlation between milling parameters and microstructure characteristics of nanocrystalline copper powder prepared via a high energy planetary ball mill. J Alloy Compd. 2007;432:103–10.

    Article  CAS  Google Scholar 

  35. Soni P. Mechanical alloying: fundamentals and applications. Cambridge: Cambridge International Science Publishing; 2000.

    Google Scholar 

  36. Shkodich N, Rogachev A, Vadchenko S, Moskovskikh D, Sachkova N, Rouvimov S, Mukasyan A. Bulk Cu–Cr nanocomposites by high-energy ball milling and spark plasma sintering. J Alloy Compd. 2014;617:39–46.

    Article  CAS  Google Scholar 

  37. Gan K, Gu M. The compressibility of Cu/SiCp powder prepared by high-energy ball milling. J Mater Process Technol. 2008;199:173–7.

    Article  CAS  Google Scholar 

  38. Xiong H, Li Z, Gan X, Chai L, Zhou K. High-energy ball-milling combined with annealing of TiC powders and its influence on the microstructure and mechanical properties of the TiC-based cermets. Mater Sci Eng, A. 2017;694:33–40.

    Article  CAS  Google Scholar 

  39. Orowan E. A type of plastic deformation new in metals. Nature. 1942;149:643–4.

    Article  ADS  Google Scholar 

  40. Wei X, Tao J, Liu Y, Bao R, Li F, Fang D, Li C, Yi J. High strength and electrical conductivity of copper matrix composites reinforced by carbon nanotube-graphene oxide hybrids with hierarchical structure and nanoscale twins. Diamond Relat Mater. 2019;99: 107537.

    Article  CAS  ADS  Google Scholar 

  41. Carpenter HCH, Tamura S. The formation of twinned metallic crystals. Proc R Soc Lond Ser A (containing papers of a mathematical and physical character). 1926;113:161–82.

    CAS  ADS  Google Scholar 

  42. Chawake N, Varanasi RS, Jaswanth B, Pinto L, Kashyap S, Koundinya N, Srivastav AK, Jain A, Sundararaman M, Kottada RS. Evolution of morphology and texture during high energy ball milling of Ni and Ni-5 wt% Cu powders. Mater Charact. 2016;120:90–6.

    Article  CAS  Google Scholar 

  43. Huang J, Wu Y, Ye H. Ball milling of ductile metals. Mater Sci Eng, A. 1995;199:165–72.

    Article  Google Scholar 

  44. Li Y-J, Tu K-N, Chen C. Tensile properties and thermal stability of unidirectionally< 111>-oriented nanotwinned and< 110>-oriented microtwinned copper. Materials. 2020;13:1211.

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  45. Humphreys FJ, Hatherly M. Recrystallization and related annealing phenomena. Amsterdam: Elsevier; 2012.

    Google Scholar 

  46. Imrich PJ, Kirchlechner C, Dehm G. Influence of inclined twin boundaries on the deformation behavior of Cu micropillars. Mater Sci Eng, A. 2015;642:65–70.

    Article  CAS  Google Scholar 

  47. Li X, Yan S, Chen X, Hong Q, Wang N. Microstructure and mechanical properties of graphene-reinforced copper matrix composites prepared by in-situ CVD, ball-milling, and spark plasma sintering. J Alloys Compd. 2020;834: 155182.

    Article  CAS  Google Scholar 

  48. Wang F, Li Y, Wakoh K, Koizumi Y, Chiba A. Cu–Ti–C alloy with high strength and high electrical conductivity prepared by two-step ball-milling processes. Mater Des. 2014;61:70–4.

    Article  CAS  Google Scholar 

  49. Uddin SM, Mahmud T, Wolf C, Glanz C, Kolaric I, Volkmer C, Höller H, Wienecke U, Roth S, Fecht H-J. Effect of size and shape of metal particles to improve hardness and electrical properties of carbon nanotube reinforced copper and copper alloy composites. Compos Sci Technol. 2010;70:2253–7.

    Article  CAS  Google Scholar 

  50. Singh MK, Gautam RK. Synthesis of copper metal matrix hybrid composites using stir casting technique and its mechanical, optical and electrical behaviours. Trans Indian Inst Met. 2017;70:2415–28.

    Article  CAS  Google Scholar 

  51. Varol T, Canakci A. Microstructure, electrical conductivity and hardness of multilayer graphene/copper nanocomposites synthesized by flake powder metallurgy. Met Mater Int. 2015;21:704–12.

    Article  CAS  Google Scholar 

  52. Norouzifard V, Naeinzadeh H, Talebi A. Fabrication and investigation of mechanical properties of copper matrix nanocomposite reinforced by steel particle. J Alloys Compd. 2021;887: 161434.

    Article  CAS  Google Scholar 

  53. Mai Y, Chen F, Lian W, Zhang L, Liu C, Jie X. Preparation and tribological behavior of copper matrix composites reinforced with nickel nanoparticles anchored graphene nanosheets. J Alloy Compd. 2018;756:1–7.

    Article  CAS  Google Scholar 

  54. Şap E, Usca ÜA, Gupta MK, Kuntoğlu M, Sarıkaya M, Pimenov DY, Mia M. Parametric optimization for improving the machining process of cu/mo-sicp composites produced by powder metallurgy. Materials. 2021;14:1921.

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  55. German RM, Messing GL, Cornwall RG. Sintering technology. Boca Raton: CRC Press; 2020.

    Google Scholar 

  56. Samsonov GV. Handbook of the physicochemical properties of the elements. Berlin: Springer Science & Business Media; 2012.

    Google Scholar 

  57. Canakci A, Varol T, Erdemir F. The effect of flake powder metallurgy on the microstructure and densification behavior of B 4 C nanoparticle-reinforced Al–Cu–Mg alloy matrix nanocomposites. Arab J Sci Eng. 2016;41:1781–96.

    Article  CAS  Google Scholar 

  58. Doğan K, Özgün Mİ, Sübütay H, Salur E, Eker Y, Kuntoğlu M, Aslan A, Gupta MK, Acarer M. Dispersion mechanism-induced variations in microstructural and mechanical behavior of CNT-reinforced aluminum nanocomposites. Arch Civil Mech Eng. 2022;22:1–17.

    Article  Google Scholar 

  59. Li D, Liu Z, Yu Y, Wang E. The influence of mechanical milling on the properties of W–40 wt% Cu composite produced by hot extrusion. J Alloys Compd. 2008;462:94–8.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emin Salur.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

The consent to submit this paper has been received explicitly from all co-authors.

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salur, E. Synergistic effect of ball milling time and nano-sized Y2O3 addition on hardening of Cu-based nanocomposites. Archiv.Civ.Mech.Eng 22, 103 (2022). https://doi.org/10.1007/s43452-022-00429-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43452-022-00429-1

Keywords

Navigation