Skip to main content
Log in

Microstructure Evolution and Properties of In Situ Micro/Nanoscale Mo2C Reinforced Copper Composite Synthesized by Hot-Pressing Consolidation of Mechanical Alloying Powders

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Cu+Mo+C powders were mechanically alloyed and hot-pressed to obtain in-situ micro/nanoscale Mo2C reinforced Cu-matrix composites. Both powders and sintered compacts were characterized and assessed for the hardness and electrical conductivity to study the alloying time effect on materials microstructure evolution and properties. During milling, Mo reacted with C forming a little MoC. As the milling time increased from 60 to 120 h, flaky powder particles were replaced by finer granular particles composed of Cu and Mo nanocrystals. For 84 h- and 120 h-milled powders, Mo combined with C besides MoC+Mo forming P63/mmc hexagonal-structured Mo2C without residual Mo during sintering, instead of primitive hexagonal Mo2C in the case of un-milled powders. Both types of Mo2C occurred in the sintered sample of 60 h-milled powders. In-situ formed Mo2C especially with nanoscale sizes in the 120 h-milled powders’ sintered composites with good electrical property was responsible for the hardness improvement by 63.6% than the un-milled case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Z.F. Jia, T.D. Chen, J. Wang and J.J. Ni, Synthesis, Characterization and Tribological Properties of Cu/Reduced Grapheme Oxide Composites, Tribol. Int., 2015, 88, p 17–24.

    Article  CAS  Google Scholar 

  2. C. Ziejewska, J. Marczyk, A. Szewczyk-Nykiel, M. Nykiel and M. Hebda, Influence of Size and Volume Share of WC Particles on the Properties of Sintered Metal Matrix Composites, Adv. Powder Technol., 2019, 30, p 835–842.

    Article  CAS  Google Scholar 

  3. Z.F. Jia, P. Zhao, J. Ni, X. Shao, L. Zhao and B. Huang, The Electrical Conductivities and Tribological Properties of Vacuum Hot-Pressed Cu/Reduced Graphene Oxide Composite, J. Mater. Eng. Perform., 2017, 26, p 4434–4441.

    Article  CAS  Google Scholar 

  4. G.H.A. Bagheri, The Effect of Reinforcement Percentages on Properties of Copper Matrix Composites Reinforced with TiC Particles, J. Alloys Compd., 2016, 676, p 120–126.

    Article  CAS  Google Scholar 

  5. H.M. Yehia, F. Nouh and O. El-Kady, Effect of Graphene Nano-Sheets Content and Sintering Time on the Microstructure, Coefficient of Thermal Expansion, and Mechanical Propterties of (Cu/WC-TiC-Co) Nanocomposites, J. Alloys Compd., 2018, 764, p 36–43.

    Article  CAS  Google Scholar 

  6. H. Zuhailawati, H.M. Salihin and Y. Mahani, Microstructure and Properties of Copper Composite Containing in In Situ NbC Reinforcement: Effects of Milling Speed, J. Alloys Compd., 2010, 489, p 369–374.

    Article  CAS  Google Scholar 

  7. M.I. Abd El Aal and H.S. Kim, Effect of the Fabrication Method on the Wear Properties of Copper Silicon Carbide Composites, Tribol. Int., 2018, 128, p 140–154.

    Article  CAS  Google Scholar 

  8. M.A. Eryomina, S.F. Lomayeva, S.N. Paranin, S.L. Demakov and E.P. Yelsukov, Effect of the Method for Producing Cu-Cr3C2 Bulk Composites on the Structure and Properties, Bull. Mater. Sci., 2017, 40, p 1021–1028.

    Article  CAS  Google Scholar 

  9. S.H. Chang, C.Y. Chuang and K.T. Huang, Mechanical Properties and Microstructures of Mo2C Strengthened Vanadis 4 Extra Alloy Steel by Powder Metallurgy and Heat Treatments, ISIJ Int., 2019, 59, p 1354–1361.

    Article  CAS  Google Scholar 

  10. C. Liu, N. Lin and Y.H. He, Influence of Mo2C and TaC Additions on the Microstructure and Mechanical Properties of Ti(C, N)-Based Cermets, Ceram. Int., 2016, 42, p 3569–3574.

    Article  CAS  Google Scholar 

  11. Z.Y. Zhao, P.F. Hui, T. Wang, Y.H. Xu, L.S. Zhong, M.X. Zhao, D.X. Yang and R. Wei, Fabrication of Mo2C Coating on Molybdenum by Contact Solid Carburization, Appl. Surf. Sci., 2018, 462, p 48–54.

    Article  CAS  Google Scholar 

  12. Q. Kang, X. He, S.B. Ren, L. Zhang, M. Wu, T. Liu, Q. Liu, C. Guo and X.H. Qu, Preparation of High Thermal Conductivity Copper-Diamond Composites using Molybdenum Carbide-Coated Diamond Particles, J. Mater. Sci., 2013, 48, p 6133–6140.

    Article  CAS  Google Scholar 

  13. Q. Liu, X.B. He, S.B. Ren, T. Liu, Q. Kang and X.H. Qu, Fabrication and Thermal Conductivity of Copper Matrix Composites Reinforced with Mo2C or TiC Coated Graphite Fibers, Mater. Res. Bull., 2013, 48(11), p 4811–4817.

    Article  CAS  Google Scholar 

  14. J. Song, Q.G. Guo, X. Gao, Z. Tao, J. Shi and L. Liu, Mo2C Intermediate Layers for the Wetting and Infiltration of Graphite Foams by Liquid Copper, Carbon, 2011, 49, p 3165–3170.

    Article  CAS  Google Scholar 

  15. R.X. Liu, G.Q. Luo, Y. Li, J. Zhang, Q. Shen and L.M. Zhang, Microstructure and Thermal Properties of Diamond/Copper Composites with Mo2C In-Situ Nano-Coating, Surf. Coat. Tech., 2019, 360, p 376–381.

    Article  CAS  Google Scholar 

  16. S. Guo, X. Zhang, C. Shi, E. Liu, C. He, F. He and N. Zhao, Enhanced Mechanical Properties and Electrical Conductivity of Graphene Nanoplatelets/Cu Composites by In Situ Formation of Mo2C Nanoparticles, Mater. Sci. Eng. A, 2019, 766, p 138365.

    Article  CAS  Google Scholar 

  17. K. Zuo, S. Xi and J. Zhou, Phase Transformation of Cu-Mo-C during Mechanical Alloying and Annealing Process, Adv. Mater. Res., 2011, 233–235, p 1678–1683.

    Article  Google Scholar 

  18. E. Liu, Y. Gao, J. Jia, Y. Bai and W. Wang, Microstructure and Mechanical Properties of In Situ NiAl–Mo2C Nanocomposites Prepared by Hot-Pressing Sintering, Mater. Sci. Eng. A, 2014, 592, p 201–206.

    Article  CAS  Google Scholar 

  19. C. Suryanarayana, Mechanical Alloying and Milling, Prog. Mater. Sci., 2001, 46, p 1–184.

    Article  CAS  Google Scholar 

  20. N.L. Cheng, Thermochemical data of pure substances, Science Press, 2015, p 1788–1789

    Google Scholar 

  21. D. Nunes, V. Livramento and R. Mateus, Mechanical Synthesis of Copper-Carbon Nanocomposites: Structural Changes, Strengthening and Thermal Stabilization, Mater. Sci. Eng. A, 2011, 528, p 8610–8620.

    Article  CAS  Google Scholar 

  22. Y. Bian, J. Ni, C. Wang, J. Zhen, H. Hao, X. Kong, H. Chen, J. Li, X. Li, Z. Jia, W. Luo and Z. Chen, Microstructure and Wear Characteristics of In-Situ Micro/Nanoscale Niobium Carbide Reinforced Copper Composites Fabricated Through Powder Metallurgy, Mater. Charact., 2021, 172, p 110847.

    Article  CAS  Google Scholar 

  23. S.C. Liao, W.E. Mayo and K.D. Pae, Theory of High Pressure/Low Temperature Sintering of Bulk Nanocrystalline TiO2, Acta Mater., 1997, 45, p 4027–4040.

    Article  CAS  Google Scholar 

  24. J.L. Cabezas-Villa, L. Olmos, H.J. Vergara-Hernández, O. Jiménez, P. Garnica, D. Bouvard and M. Flores, Constrained Sintering and Wear Properties of Cu-WC Composite Coatings, Trans. Nonferrous Met. Soc. China, 2017, 27, p 2214–2224.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Natural Science Foundation of Shandong Province of China under Grant Number ZR2017MEM001 and National Natural Science Foundation of China under Grant Number 52174346.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junjie Ni.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bian, Y., Ni, J. Microstructure Evolution and Properties of In Situ Micro/Nanoscale Mo2C Reinforced Copper Composite Synthesized by Hot-Pressing Consolidation of Mechanical Alloying Powders. J. of Materi Eng and Perform 31, 4604–4610 (2022). https://doi.org/10.1007/s11665-021-06572-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-06572-9

Keywords

Navigation