Skip to main content
Log in

Effect of cooling rate on microstructure and microhardness of hypereutectic Al–Ni alloy

  • Original Article
  • Published:
Archives of Civil and Mechanical Engineering Aims and scope Submit manuscript

Abstract

High solidification cooling rates during unsteady-state conditions of solidification of Al-based alloys can induce different microstructural length scales or metastable phases, leading to improved properties. The present study aims to characterize the microstructural arrangement of the hypereutectic Al–8 wt%Ni alloy, unidirectionally solidified in unsteady-state heat flow conditions, examining the influence of the cooling rate in the development of the Al–Al3Ni eutectic and the primary phase. A columnar-to-equiaxed macrostructural transition is shown to occur at a solidification cooling rate () of about 4.8 °C/s, with different microstructures associated with each morphological zone. The observation of microstructures of hypoeutectic, eutectic and hypereutectic Al–Ni alloys, has permitted an asymmetric coupled zone diagram to be proposed. The microstructural interphase spacings of the Al–8 wt%Ni alloy are experimentally determined and correlated to , and the Vickers microhardness (HV) is shown to decrease with the increase in such spacings. The higher experimental HV profile of the examined hypereutectic alloy as compared to that of the eutectic Al–Ni alloy is attributed to the formation of a supersaturated solid solution of Ni in α-Al.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Poliarus O, Morgiel J, Umanskyi O, Pomorska M, Bodrowski P, Szczerba MJ, Kostenko O. Microstructure and wear of thermal sprayed composite NiAl-based coatings. Archiv Civ Mech Eng. 2019;19:1095–103.

    Article  Google Scholar 

  2. Gonzalez G, Lara-Rodriguez GA, Sandoval-Jiménez A, Saikaly W, Charai A. The influence of cooling rate on the microstructure of an Al–Ni hypereutectic alloy. Mater Charact. 2008;59:1607–12.

    Article  CAS  Google Scholar 

  3. Liu F, Zhu X, Ki S. Effects of Ni on the microstructure, hot tear and mechanical properties of Al–ZnMg–Cu alloys under as-cast condition. J Alloys Compd. 2020;821:153458.

    Article  CAS  Google Scholar 

  4. Kakitani R, Reyes RV, Garcia A, Spinelli JE, Cheung N. Relationship between spacing of eutectic colonies and tensile properties of transient directionally solidified Al–Ni eutectic alloy. J Alloys Compd. 2018;733:59–68.

    Article  CAS  Google Scholar 

  5. Fan Y, Makhlouf MM. The effect of introducing the Al-Ni eutectic composition into Al-Zr-V alloys on microstructure and tensile properties. Mater Sci Eng, A. 2016;654:228–35.

    Article  CAS  Google Scholar 

  6. Akopyan TK, Belov NA, Naumova EA, Letyagin NV. New in situ Al matrix composites based on Al–Ni–La eutectic. Mater Lett. 2019;245:110–3.

    Article  CAS  Google Scholar 

  7. Suwanpreecha C, Pandee P, Patakham U, Limmaneevichitr C. New generation of eutectic Al–Ni casting alloys for elevated temperature services. Mater Sci Eng, A. 2018;709:46–54.

    Article  CAS  Google Scholar 

  8. Fan Y, Huang K, Makhlouf MM. Precipitation strengthening in Al–Ni–Mn alloys. Metall Mater Trans A. 2015;46:5830–41.

    Article  CAS  Google Scholar 

  9. Wang Q, Wang ZY, Liu T, Wang CJ, Zhang C, He JC. Alignment of primary Al3Ni phases in hypereutectic Al–Ni alloys with various compositions under high magnetic fields. Sci China Ser E. 2009;52:857–63.

    Article  CAS  Google Scholar 

  10. Reyes RV, Bello TS, Kakitani R, Costa TA, Garcia A, Cheung N, Spinelli JE. Tensile properties and related microstructural aspects of hypereutectic Al–Si alloys directionally solidified under different melt superheats and transient heat flow conditions. Mater Sci Eng, A. 2017;685:235–43.

    Article  CAS  Google Scholar 

  11. Feng H, Yang Z, Bai Y, Zhang L, Liu Y. Effect of Cr content and cooling rate on the primary phase of Al–2.5Mn alloy. Int J Miner Metall Mater. 2019;26:1551–8.

    Article  CAS  Google Scholar 

  12. Ourfali MF, Todd I, Jones H. Effect of solidification cooling rate on the morphology and number per unit volume of primary Mg2Si particles in a hypereutectic Al–Mg–Si alloy. Metall Mater Trans A. 2005;36:1368–72.

    Article  Google Scholar 

  13. Zuo KS, Zhang HT, Han X, Jia HL, Qin K, Cui JZ. Effects of Cr and cooling rate on segregation and refinement of primary Si in Al–20 wt%Si alloy. Int Metalcast. 2014;8:55–62.

    Article  Google Scholar 

  14. Kakitani R, Reyes RV, Garcia A, Cheung N, Spinelli JE. Effects of melt superheating on the microstructure and tensile properties of a ternary Al–15 Wt Pct Si–1.5 Wt Pct Mg alloy. Metall Mater Trans A. 2019;50:1308–22.

    Article  CAS  Google Scholar 

  15. Dias M, Oliveira R, Kakitani R, Cheung N, Henein H, Spinelli JE, Garcia A. Effects of solidification thermal parameters and Bi doping on silicon size, morphology and mechanical properties of Al–15wt% 3.2wt% Bi and Al–18wt% 3.2wt% Bi alloys. J Mater Res Technol. 2020;9:3460–70.

    Article  CAS  Google Scholar 

  16. Lekakh SN, O’Malley R, Emmendorfer M, Hrebec B. Control of columnar to equiaxed transition in solidification macrostructure of austenitic stainless steel castings. ISIJ Int. 2017;57:824–32.

    Article  CAS  Google Scholar 

  17. Leriche N, Combeau H, Gandin C-A, Založnik M. Modelling of columnar-to-equiaxed and equiaxed-to-columnar transitions in ingots using a multiphase model. IOP Conf Ser-Mat Sc. 2015;84:012087.

    Google Scholar 

  18. Svidró P, Diószegi A. Determination of the columnar to equiaxed transition in hypoeutectic lamellar cast iron. ISIJ Int. 2014;54:460–5.

    Article  Google Scholar 

  19. Wang H, Zhao P, Chen J, Li M, Yang Z, Wu C. Original position statistic distribution analysis study of low alloy steel continuous casting billet. Sci China Ser E. 2005;48:104–15.

    Article  CAS  Google Scholar 

  20. Bhaumik SK, Bhaskaran TA, Rangaraju R, Venkataswamy MA, Parameswara MA, Krishnan RV. Failure of turbine rotor blisk of an aircraft engine. Eng Fail Anal. 2002;9:287–301.

    Article  CAS  Google Scholar 

  21. Siqueira CA, Cheung N, Garcia A. Solidification thermal parameters affecting the columnar-to-equiaxed transition. Metall Mater Trans A. 2002;33:2107–18.

    Article  Google Scholar 

  22. Canté MV, Cruz KS, Spinelli JE, Cheung N, Garcia A. Experimental analysis of the columnar-to-equiaxed transition in directionally solidified Al–Ni and Al–Sn alloys. Mater Lett. 2007;61:2135–8.

    Article  Google Scholar 

  23. Okamoto H. Al–Ni (Aluminum–Nickel). J Phase Equilib. 1993;14:257–9.

    Article  Google Scholar 

  24. Glazoff MV, Khvan A, Zolotorevsky VS, Belov NA, Dinsdale A. Casting aluminum alloys: their physical and mechanical metallurgy. Oxford: Butterworth-Heinemann; 2018.

    Google Scholar 

  25. Canté MV, Spinelli JE, Cheung N, Garcia A. The correlation between dendritic microstructure and mechanical properties of directionally solidified hypoeutectic Al–Ni alloys. Met Mater Int. 2010;16:39–49.

    Article  Google Scholar 

  26. Kaya H, Böyük U, Çadırlı E, Maraşlı N. Measurements of the microhardness, electrical and thermal properties of the Al–Ni eutectic alloy. Mater Des. 2012;34:707–12.

    Article  CAS  Google Scholar 

  27. Zhuang YX, Zhang XM, Zhu LH, Hu ZQ. Eutectic spacing and faults of directionally solidified Al–Al3Ni eutectic. Sci Technol Adv Mater. 2001;2:37–9.

    Article  CAS  Google Scholar 

  28. El-Mahallawy NA. Effect of composition on the structure of directionally solidified Al–Ni and Al–Ni–Cu composites. Fibre Sci Technol. 1983;19:27–36.

    Article  CAS  Google Scholar 

  29. Yamagat H, Kasprzak W, Aniolek M, Kurita H, Sokolowski JH. The effect of average cooling rates on the microstructure of the Al–20% Si high pressure die casting alloy used for monolithic cylinder blocks. J Mater Process Technol. 2008;203:333–41.

    Article  Google Scholar 

  30. Pierantoni M, Gremaud M, Magnin P, Stoll D, Kurz W. The coupled zone of rapidly solidified Al–Si alloys in laser treatment. Acta Metall Mater. 1992;40:1637–44.

    Article  CAS  Google Scholar 

  31. Silva CAP, Kakitani R, Canté MV, Brito C, Garcia A, Spinelli JE, Cheung N. Microstructure, phase morphology, eutectic coupled zone and hardness of Al–Co alloys. Mater Charact. 2020;169:110617.

    Article  CAS  Google Scholar 

  32. Li C, Yang H, Ren Z, Ren W, Wu Y. Application of differential thermal analysis to investigation of magnetic field effect on solidification of Al–Cu hypereutectic alloy. J Alloys Compd. 2010;505:108–12.

    Article  CAS  Google Scholar 

  33. Li SM, Quan QR, Li XL, Fu HZ. Increasing the growth velocity of coupled eutectics in directional solidification of off-eutectic alloys. J Cryst Growth. 2011;314:279–84.

    Article  ADS  CAS  Google Scholar 

  34. Jiang A, Wang X. Dendritic and seaweed growth of proeutectic scandium tri-aluminide in hypereutectic Al–Sc undercooled melt. Acta Mater. 2020;200:56–65.

    Article  ADS  CAS  Google Scholar 

  35. Stefanescu DM. Science and engineering of casting solidification. 2nd ed. New York: Springer; 2009.

    Google Scholar 

  36. Li Y. Bulk metallic glasses: eutectic coupled zone and amorphous formation. JOM. 2005;57:60–3.

    Article  CAS  Google Scholar 

  37. Kurz W, Fisher DJ. Dendrite growth in eutectic alloys: the coupled zone. Int Met Rev. 1979;24:177–204.

    Article  CAS  Google Scholar 

  38. Garcia A, Prates M. Mathematical model for the unidirectional solidification of metals: I. cooled molds. Metall Trans B. 1978;9:449–57.

    Article  Google Scholar 

  39. Spinelli JE, Cheung N, Garcia A. On array models theoretical predictions versus measurements for the growth of cells and dendrites in the transient solidification of binary alloys. Philos Mag. 2011;91:1705–23.

    Article  ADS  CAS  Google Scholar 

  40. Hall EO. The deformation and ageing of mild steel: III discussion of results. Proc Phys Soc. 1951;64:747–53.

    Article  ADS  Google Scholar 

  41. Vida TA, Brito C, Lima TS, Spinelli JE, Cheung N, Garcia A. Near-eutectic Zn–Mg alloys: interrelations of solidification thermal parameters, microstructure length scale and tensile/corrosion properties. Curr Appl Phys. 2019;19:582–98.

    Article  ADS  Google Scholar 

  42. Gouveia GL, Kakitani R, Gomes LF, Afonso CRM, Cheung N, Spinelli JE. Slow and rapid cooling of Al–Cu–Si ultrafine eutectic composites: interplay of cooling rate and microstructure in mechanical properties. J Mater Res. 2019;34:1381–94.

    Article  ADS  Google Scholar 

  43. Taha AS, Hammad FH. Application of the Hall–Petch relation to microhardness measurements on Al, Cu, Al-MD 105, and Al-Cu alloys. Phys Status Solidi A. 1990;119:455–62.

    Article  ADS  CAS  Google Scholar 

  44. Brito C, Costa TA, Vida TA, Bertelli F, Cheung N, Spinelli JE, Garcia A. Characterization of dendritic microstructure, intermetallic phases, and hardness of directionally solidified Al–Mg and Al–Mg–Si alloys. Metall Mater Trans A. 2015;46:3342–55.

    Article  CAS  Google Scholar 

  45. Bertelli F, Brito C, Ferreira IL, Reinhart G, Nguyen-Thi H, Mangelinck-Noël N, Cheung N, Garcia A. Cooling thermal parameters, microstructure, segregation and hardness in directionally solidified Al–Sn–(Si;Cu) alloys. Mater Des. 2015;72:31–42.

    Article  CAS  Google Scholar 

  46. Verissimo NC, Brito C, Santos WLR, Cheung N, Spinelli JE, Garcia A. Interconnection of Zn content, macrosegregation, dendritic growth, nature of intermetallics and hardness in directionally solidified Mg–Zn alloys. J Alloys Compd. 2016;662:1–10.

    Article  CAS  Google Scholar 

  47. Callister WD. Materials science and engineering: an introduction. 10th ed. Hoboken: Wiley; 2018.

    Google Scholar 

  48. MatWeb: Online materials information resource. 2019. http://www.matweb.com/. Accessed 15 Nov 2019.

  49. Kilicaslan MF, Karakose E. Depth sensing indentation analyses of hypereutectic Al–10Ni—XSc (X = 0, 1, 2) alloys. Met Mat Int. 2017;23:473–80.

    Article  CAS  Google Scholar 

  50. Chankitmunkong S, Eskin DG, Limmaneevichitr C. Structure refinement, mechanical properties and feasibility of deformation of hypereutectic Al–Fe–Zr and Al–Ni–Zr alloys subjected to ultrasonic melt processing. Mater Sci Eng, A. 2020;788:139567.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Brazilian Nanotechnology National Laboratory—LNNano, is gratefully acknowledged for the use of its facilities (XRD equipment).

Funding

The authors are grateful to the National Council for Scientific and Technological Development (CNPq) and PIBIC/PRP-UNICAMP program for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Cheung.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest in this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carrara, A.P., Kakitani, R., Garcia, A. et al. Effect of cooling rate on microstructure and microhardness of hypereutectic Al–Ni alloy. Archiv.Civ.Mech.Eng 21, 14 (2021). https://doi.org/10.1007/s43452-020-00159-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43452-020-00159-2

Keywords

Navigation