Skip to main content
Log in

In Situ Study of Microstructure Evolution in Solidification of Hypereutectic Al-Si Alloys with Application of Thermal Analysis and Neutron Diffraction

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Understanding of the kinetics of solid-phase evolution in solidification of hypereutectic aluminum alloys is a key to control their as-cast microstructure and resultant mechanical properties, and in turn, to enhance the service characteristics of actual components. This study was performed to evaluate the solidification kinetics for three P-modified hypereutectic Al-19 pct Si alloys: namely, Al-Si binary alloy and with the subsequent addition of 2.8 pct Cu and 2.8 pct Cu + 0.7 pct Mg. Metallurgical evaluation included thermodynamic calculations of the solidification process using the FactSage™ 6.2 software package, as well as experimental thermal analysis, and in situ neutron diffraction. The study revealed kinetics of solid α-Al, solid Si, Al2Cu, and Mg2Si evolution, as well as the individual effects of Cu and Mg alloying additions on the solidification path of the Al-Si system. Various techniques applied in this study resulted in some discrepancies in the results. For example, the FactSage computations, in general, resulted in 281 K to 286 K (8 °C to 13 °C) higher Al-Si eutectic temperatures than the ones recorded in the thermal analysis, which are also ~278 K (~5 °C) higher than those observed in the in situ neutron diffraction. None of the techniques can provide a definite value for the solidus temperature, as this is affected by the chosen calculation path [283 K to 303 K (10 °C to 30 °C) higher for equilibrium solidification vs non-equilibrium] for the FactSage analysis; and further complicated by evolution of secondary Al-Cu and Mg-Si phases that commenced at the end of solidification. An explanation of the discrepancies observed and complications associated with every technique applied is offered in the paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. J.L. Jorstad: AFS Trans., 2009, vol. 117, 241–49.

    Google Scholar 

  2. Y. P. Telang, “Process Variables in Al-21Si Alloys Refinement”, AFS Transactions, vol. 71, 232-240 (1963).

    Google Scholar 

  3. W. Kasprzak, J.H. Sokolowski, H. Yamagata, M. Sahoo, H. Kurita: Int. J. Met. Cast., 2009, vol. 3(3), pp. 55–73.

    Google Scholar 

  4. H. Yamagata, H. Kurita, M. Aniolek, W. Kasprzak, J. H. Sokolowski, “Thermal and Metallographic Characteristics of the Al-20%Si High-Pressure Die-Casting Alloy for Monolithic Cylinder Blocks,” Journal of Materials Processing Technology, vol. 199, no. 1-3, 84-90 (2008).

    Article  Google Scholar 

  5. H. Yamagata, W. Kasprzak, M. Aniolek, H. Kurita, J. H. Sokolowski, “The Effect of Average Cooling Rates on the Microstructure of the Al-20%Si High Pressure Die Casting Alloy used for Monolithic Cylinder Blocks”, J. Mater. Process. Technol., vol. 203, 333-341 (2008).

    Article  Google Scholar 

  6. J.L. Jorstad, D. Apelian: Int. J. Met. Cast., 2009, vol. 3(3), pp. 13–43.

    Google Scholar 

  7. Backerüd, L.C., Solidification Characteristics of Aluminum Alloys, Vol. 2, Foundry Alloys, American Foundry Society Inc., Stockholm, 1990.

    Google Scholar 

  8. N.G. Tenekedjiev: Cast Met., 1990, vol. 3, 96–105.

    Google Scholar 

  9. Weiss, J. C., Loper, C. R., “Primary Si in Hypereutectic Aluminum-Silicon Castings,” Transactions of the American Foundry Society, 1987, vol. 95, pp 51-62.

    Google Scholar 

  10. Ghosh, S.M.: AFS Trans., 1964, vol. 72, pp. 721–32.

    Google Scholar 

  11. Y.P. Telang: Trans. Am. Foundry Soc., 1963, vol. 71, pp. 232–40.

    Google Scholar 

  12. P. Henslar: The New Porsche 944 4-Cylinder Aluminum Engine, SAE Paper, 1983, No. 830004.

  13. J.L. Jorstad: Reynolds 390 Engine Technology, SAE Paper, 1983, No. 830010.

  14. H. Kurita, H. Yamagata, H. Arai, T. Nakamura: SAE Technical Paper, SAE World Congress, Detroit, 2004.

  15. W. Kasprzak, J.H. Sokolowski, H. Yamagata, M. Aniolek, and H. Kurita: J. Mater. Eng. Perform., 2011, vol. 20, 120–132.

    Article  Google Scholar 

  16. J.L. Jorstad and D. Apelian: Die Cast. Eng., 2004, vol. 48(3), pp. 50, 52, 54–56, 58.

  17. Dehong, L.Y.: J. Mater. Process. Technol., 2007, vol. 189, pp. 13–18.

    Article  Google Scholar 

  18. H.U. Takagi, Mater. Trans., 2007, vol. 48, pp. 960–66.

    Article  Google Scholar 

  19. R.-Y. Wang and H.-Y. Lu: Trans. Am. Foundry Soc., 2007, vol. 117, pp. 241–48.

    Google Scholar 

  20. D. Sediako, F. D’Elia, A. Lombardi, A. Machin, C. Ravindran, C. Hubbard, and R. Mackay: SAE Int. J. Mater. Manuf., 2011, vol. 4, pp. 138–51.

    Article  Google Scholar 

  21. N. Iqbal, N.H. van Dijk, V.W.J. Verhoeven, W. Montfrooij, T. Hansen, L. Katgerman, and G.J. Kearley, “Experimental study of ordering kinetics in aluminum alloys during solidification”: Acta Mater., 2003, vol. 51, pp. 4497–4504.

    Article  Google Scholar 

  22. N. Iqbal, N.H. van Dijk, V.W.J. Verhoeven, T. Hansen, L. Katgerman, and G.J. Kearley, “Periodic structural fluctuations during the solidification of aluminum alloys studied by neutron diffraction”: Mater. Sci. Eng. A, 2004, vol. 367, pp. 82–88.

    Article  Google Scholar 

  23. W. Kasprzak, D. Sediako, M. Sahoo, M. Walker, and I. Swainson: Proceedings of TMS 2010, Supplemental Proceedings: Volume 1, Materials Processing and Properties, pp. 93–104.

  24. W. Kasprzak, D. Sediako, M. Walker, M. Sahoo, and I. Swainson, “Solidification Analysis of an Al-19 Pct Si Alloy Using In-Situ Neutron Diffraction”, Metallurgical and Materials Transactions A, Volume 42A, July 2011, pp. 1854 – 1862.

    Article  Google Scholar 

  25. D. Sediako, W. Kasprzak, I. Swainson, and O. Garlea: Aluminum Alloys: Fabrication, Characterization and Applications, Supplemental Proceedings: Volume 2: Materials Fabrication, Properties, Characterization, and Modeling, The Minerals, Metals & Materials Society,TMS, San Diego, CA, February 2011, pp. 279–89.

  26. W. Kasprzak, D. Sediako, M. Aniolek, and H. Kurita: 13th International Conference on Aluminum Alloys (ICAA13), 2013, pp. 1431–40.

  27. M. Kasprzak, W. Kasprzak, W.T. Kierkus, and J.H. Sokolowski: U.S. Patent No. 7,354,491; Canadian Patent No. 2,470,127, 2009.

  28. http://www.factsage.com. Accessed Aug 2011.

  29. E. Sjolander and S. Seifeddine, “The heat treatment of Al-Si-Cu-Mg casting alloys,” J. Mater. Process. Technol., 210 (2010), 1249-1259.

    Article  Google Scholar 

  30. L.J. Colley, M.A. Wells, R. MacKay, and W. Kasprzak: Proceedings of the 26th ASM Heat Treating Society Conference, Cincinnati, OH, 2011.

  31. G.I. Eskin and D.G. Eskin: Z. Metallkde., 2004, vol. 95(8), pp. 682–90.

    Article  Google Scholar 

  32. W. Wang, X. Bian, J. Qin, and S.I. Syliusarenko, “The Atomic-Structure Changes in Al-16 Pct Si Alloy above the Liquidus“, Metall. Mater. Trans. A, 31 (9) (2000) 2163–2168.

    Article  Google Scholar 

  33. J. Tamminen, Thermal Analysis for Investigation of Solidification Mechanisms in Metals and Alloys, Chemical Communications, University of Stockholm, Stockholm, 1988.

    Google Scholar 

  34. L. Bäckerud, G. Chai, J. Tamminen, Solidification Characteristics of Aluminum Alloys, Foundry Alloys, vol. 2, AFS/Skanaluminum, Des Plaines, IL, 1990, pp. 71–84.

    Google Scholar 

  35. Djurdjevic, M., Jiang, H., Sokolowski, J., “On-line prediction of aluminum-silicon eutectic modification level using thermal analysis”, Materials Characterization, Volume 46, Issue 1, January 2001, pp. 31-38.

    Article  Google Scholar 

  36. Mackay, R., Sokolowski, J., “Experimental observations of dendrite coarsening & Al-Si eutectic growth in progressively quenched structures of Al-Si-Cu casting alloys”, Int. J. Met. Cast., Vol. 2, No. 2, March 2008, pp. 77-80.

    Google Scholar 

  37. M.B. Djurdjevic, I. Vicario, G. Huber: Rev. Metal., 2014, vol. 50(1), pp. 3546.

    Article  Google Scholar 

  38. M.B. Djurdjevic, W. Kasprzak, C. A. Kierkus, W.T. Kierkus, and J.H. Sokolowski: Quantification of Cu Enriched Phases in Synthetic 3XX Aluminum Alloys Using the Thermal Analysis Technique, AFS Transactions, 15th Casting Congress, Dallas, 2001, pp. 1–12.

  39. D.B. Sirdeshmukh, L. Sirdeshmukh, and K.G. Subhadra: in Micro- and Macro-Properties of Solids, Materials Science, 2006, vol. 80, ISBN: 978-3-540-31785-2, pp 77–133.

  40. M.T. Hutchings, P.J. Withers, T.M. Holden, and T. Lorentzen: Introduction to the Characterization of Residual Stress by Neutron Diffraction, CRC Press, Boca Raton, 2005.

    Google Scholar 

  41. K. Nogita, S.D. McDonald, and A.K. Dahle: TMS Annual Meeting, SHAPE CASTING: 2nd International Symposium, Orlando, FL, 2007, Code 73625, pp. 51–58.

  42. A.K. Dahle: 5th International Conference on Solidification and Gravity, Miskolc-Lillafured, Hungary, September 2008, Code 81394, 2010, vol. 649, pp. 287–93.

  43. L. Salvo, P. Lhuissier, M. Scheel, S.A. Terzi, M. DiMichiel, E. Boller, J.A. Taylor, A.K. Dahle, M. Suéry: Trans. Indian Inst. Met., 2012, vol. 65(6), pp. 623–26.

    Article  Google Scholar 

  44. A. K. Dahle, K. Nogita, J. W. Zindel, S. D. McDonald and L.M. Hogan, “Eutectic Nucleation and Growth in Hypoeutectic Al-Si Alloys at Different Strontium Levels”, Metallurgical & Materials Transactions A, 2001, Vol. 32A No 4, pp. 949-960.

    Article  Google Scholar 

  45. J.W. Zindel, G. Goldewski, and D. Donlon: Modeling of Casting, Welding & Advanced Solidification Processes VII, TMS, San Diego, 1998, June 7–12.

  46. E. Talaat and H. Fredriksson: Mater. Trans., 2000, vol. 41(4), pp. 507–15.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Renata Zavadil for assistance with metallographic work and Marta Aniolek MSc. Eng. for thermal analysis experiments. Financial support of the Materials for Energy End Use in Transformation Program of Natural Resources Canada is gratefully acknowledged. Studies completed at the Canadian Neutron Beam Centre (CNBC) were partially sponsored by the Natural Sciences and Engineering Research Council of Canada (NSERC). We gratefully acknowledge contributions made to this study by Drs. Ovidiu Garlea and Clarina de la Cruz, Oak Ridge National Laboratories. Moreover, we thank Ibrahim Sadiq and Matthew Li from University of Waterloo for their help with experimental data processing and graphical data representation during their co-op terms correspondingly at CanmetMATERIALS and CNBC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitry G. Sediako.

Additional information

Manuscript submitted August 9, 2013.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sediako, D.G., Kasprzak, W. In Situ Study of Microstructure Evolution in Solidification of Hypereutectic Al-Si Alloys with Application of Thermal Analysis and Neutron Diffraction. Metall Mater Trans A 46, 4160–4173 (2015). https://doi.org/10.1007/s11661-015-3007-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-015-3007-0

Keywords

Navigation