Skip to main content
Log in

A re-consideration of neural/receptor mechanisms in chemotherapy-induced nausea and vomiting: current scenario and future perspective

  • Review
  • Published:
Pharmacological Reports Aims and scope Submit manuscript

Abstract

The neural mechanisms and the receptors behind the course of chemotherapy-induced nausea and vomiting (CINV) are well described and considered mechanistically multifactorial, whereas the neurobiology of nausea is not completely understood yet. Some of the anti-neoplastic medications like cisplatin result in biphasic vomiting response. The acute phase of vomiting is triggered mainly via the release of serotonin from the enterochromaffin (EC) cells in the gastrointestinal tract (GIT) and results in stimulation of dorsal vagal complex (DVC) of the vomiting center and the vomiting is initiated by downward communication to the gut via vagal efferents. Agonism of 5HT3 receptors is majorly involved in the mediation of the acute phase. Therefore, antagonists at 5HT3 receptors are effective in the management of acute-phase vomiting episodes. Likewise, Dopamine type 2 (D2) receptors, dopamine neurotransmitter, Muscarinic receptors (M3), GLP1 receptors, and histaminergic receptors (H1) are also implicated in the vomiting act as well. In continuation, Cannabinoid type 1 (CB1) receptors are also recommended and included in the guidelines as agonism of presynaptically located CB1 receptors inhibits the release of excitatory neurotransmitters responsible for vomiting initiation. The delayed phase involves the release of “Substance P” in the gut and results in the stimulation of neurokinin-1 (NK1) receptors centrally in the area postrema (AP) and nucleus tractus solitarius (NTS), subsequently the vomiting response. The current understanding is the existence of overlapping mechanisms of neurotransmitters, serotonin, dopamine, and substance P throughout the time course of CINV. Furthermore, the emetic neurotransmitters are released via calcium ion (Ca++)-dependent mechanisms, implicating the molecular targets of intracellular Ca++ signaling in emetic circuitry. The current review entails the neurobiology of nausea and vomiting induced by cancer chemotherapeutic agents and the recent approaches in the management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

Abbreviations

AP:

Area postrema

AVP:

Arginine vasopressin

BBB:

Blood–brain barrier

CINV:

Chemotherapy-induced nausea and vomiting

CB1 :

Cannabinoid receptor type 1

CNS:

Central nervous system

CTZ:

Chemoreceptor trigger zone

CSF:

Cerebrospinal fluid

CTA:

Conditioned taste aversion

DVC:

Dorsal vagal complex

D1-4 :

Dopamine receptors type 1–4

DMV:

Dorsal motor nucleus of the vagus

D:

Dopamine

Dopac:

Dihydroxy phenylacetic acid

EC:

Enterochromaffin cells

GIT:

Gastrointestinal tract

GABA:

Gamma-aminobutyric acid

GLP1 :

Glucagon-like peptide type 1

HP:

Hypothalamus

LTCC:

L-type calcium ion channels

NMDA:

N-methyl d-aspartate receptor

NK1 :

Neurokinin receptor type 1

NTS:

Nucleus tractus solitarius

SP:

Substance P

5HT1 :

5-Hydroxy tryptamine receptor type 1

5HT3 :

5-Hydroxy tryptamine receptor type 3

5HT4 :

5-Hydroxy tryptamine receptor type 4

5HT7 :

5-Hydroxy tryptamine receptor type 7

5HT1A :

5-Hydroxy tryptamine receptor type 1A

5HT1B :

5-Hydroxy tryptamine receptor type 1B

5HT1D :

5-Hydroxy tryptamine receptor type 1D

Δ9-THC:

Delta-9-tetrahydrocannabinol

5HIAA:

5-Hydroxy indole acetic acid

References

  1. Ullah I, Subhan F, Shahid M, Ahmad N, Shah R, Alam J, et al. Phytotherapeutic approach in the management of cisplatin-induced vomiting; neurochemical considerations in pigeon vomit model. Oxid Med Cell Longev. 2022;2022:3914408.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Hesketh P. Chemotherapy-induced nausea and vomiting. N Engl J Med. 2008;358:2482–94.

    Article  CAS  PubMed  Google Scholar 

  3. Markman M. Progress in preventing chemotherapy-induced nausea and vomiting. Cleve Clin J Med. 2002;69:609–15.

    Article  PubMed  Google Scholar 

  4. Tanihata S, Igarashi H, Suzuki M, Uchiyama T. Cisplatin-induced early and delayed emesis in the pigeon. Br J Pharmacol. 2000;130:132–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kris MG, Tonato MB, Ballatori E, Espersen E, Herrstedt B, Rittenberg J, Einhorn C, Grunberg LH, Saito MS. Consensus recommendations for the prevention of vomiting and nausea following high-emetic-risk chemotherapy. Support Care Cancer. 2011;19:25–32.

    Article  Google Scholar 

  6. Sam T, Chan S, Rudd J, Yeung J. Action of glucocorticoids to antagonise cisplatin-induced acute and delayed emesis in the ferret. Eur J Pharmacol. 2001;417:231–7.

    Article  CAS  PubMed  Google Scholar 

  7. Grelot L, Dapzol J, Esteve EF, Frugière A, Bianchi AL, Sheldrick RLG, Gardner CJ, Ward P. Potent inhibition of both the acute and delayed emetic responses to cisplatin in piglets treated with GR205171, a novel highly selective tachykinin NK1 receptor antagonist. Br J Pharmacol. 2009;124:1643–50.

    Article  Google Scholar 

  8. Yamakuni H, Sawai-Nakayama H, Mazumi K, Ianus JM, Maeda Y, Matsuo M, Manda T, Mutoh S. Resiniferatoxin antagonizes cisplatin-induced emesis in dogs and ferrets. Eur J Pharmacol. 2002;442:273–8.

    Article  CAS  PubMed  Google Scholar 

  9. Fabi A, Barduagni ML, Portalone S, Mauri L, De Marinis M, Narduzzi F, Tonini C, Giampaolo G, Pacetti UM. Is delayed chemotherapy-induced emesis well managed in oncological clinical practice? Support Care Cancer. 2003;11:156–61.

    Article  PubMed  Google Scholar 

  10. Milano S, Blower P, Romain D, Grélot L. The piglet as a suitable animal model for studying the delayed phase of cisplatin-induced emesis. J Pharmacol Exp Ther. 1995;274:951–61.

    CAS  PubMed  Google Scholar 

  11. Sani A, Hassan D, Khalil AT, Mughal A, El-Mallul A, Ayaz M, et al. Floral extracts-mediated green synthesis of NiO nanoparticles and their diverse pharmacological evaluations. J Biomol Struct Dyn. 2021;39:4133–47.

    Article  CAS  PubMed  Google Scholar 

  12. Mir NT, Saleem U, Anwar F, Ahmad B, Ullah I, Hira S, et al. Lawsonia Inermis markedly improves cognitive functions in animal models and modulate oxidative stress markers in the brain. Medicina. 2019;55:192.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Percie du Sert N, Rudd JA, Moss R, Andrews PL. The delayed phase of cisplatin-induced emesis is mediated by the area postrema and not the abdominal visceral innervation in the ferret. Neurosci Lett. 2009;465:16–20.

    Article  CAS  PubMed  Google Scholar 

  14. Saito R, Takano Y, Kamiya H. Roles of substance P and NK1 receptor in the brainstem in the development of emesis. J Pharmacol Sci. 2003;91:87–94.

    Article  CAS  PubMed  Google Scholar 

  15. Nakayama H, Higaki YH, Ishikawa HIM, Matsuo K, Mutoh SM. Antiemetic activity of FK1052, a 5-HT3 and 5-HT4 receptor antagonist, in Suncus murinus and ferrets. J Pharmacol Sci. 2005;98:396–403.

    Article  CAS  PubMed  Google Scholar 

  16. Zhong W, Picca AJ, Lee AS, Darmani NA. Ca2+ signaling and emesis: Recent progress and new perspectives. Auton Neurosci. 2017;202:18–27.

    Article  CAS  PubMed  Google Scholar 

  17. Gardner C, Twissell D, Dale TJ, Gale JJ, Kilpatrick CC, Bountra GJ, Ward PC. The broad-spectrum anti-emetic activity of the novel non-peptide tachykinin NK1 receptor antagonist GR203040. Br J Pharmacol. 2012;116:3158–63.

    Article  Google Scholar 

  18. Pacher P, Batkai S, Kunos G. The endocannabinoid system as an emerging target of pharmacotherapy. Pharmacol Rev. 2006;58:389–462.

    Article  CAS  PubMed  Google Scholar 

  19. Darmani NA. Delta-9-tetrahyrocannabinol differentially suppresses cisplatin-induced emesis and indices of motor function via cannabinoid CB1 receptors in the least shrew. Pharmcol Biochem Behav. 2001;69:239–49.

    Article  CAS  Google Scholar 

  20. Mackie K, Stella N. Cannabinoid receptors and endocannabinoids: evidence for new players. AAPS J. 2006;8:298–306.

    Article  Google Scholar 

  21. Pertwee R. Cannabinoid pharmacology: the first 66 years. Br J Pharmacol. 2006;147:163–71.

    Article  Google Scholar 

  22. Khalil A, Ovais M, Iqbal J, Ali A, Ayaz M, Abbas M, et al. Microbes-mediated synthesis strategies of metal nanoparticles and their potential role in cancer therapeutics. Semin Cancer Biol. 2022;86(3):693–705.

    Article  CAS  PubMed  Google Scholar 

  23. Patra C, Ahmad I, Ayaz M, Khalil AT, Mukherjee S, Ovais M. Biogenic nanoparticles for cancer theranostics. Amsterdam, Netherlands: Elsevier; 2021.

    Google Scholar 

  24. Ayaz M, Nawaz A, Ahmad S, Mosa OF, Eisa Hamdoon AA, Khalifa MA, et al. Underlying anticancer mechanisms and synergistic combinations of phytochemicals with cancer chemotherapeutics: potential benefits and risks. J Food Qual. 2022;2022:1–15.

    Article  Google Scholar 

  25. Ullah I, Subhan F, Lu Z, Chan SW, Rudd JA. Action of Bacopa monnieri to antagonize cisplatin-induced emesis in Suncus murinus (house musk shrew). J Pharmacol Sci. 2017;133:232–9.

    Article  CAS  PubMed  Google Scholar 

  26. Ariumi H, Saito R, Nago S, Hyakusoku M, Takano Y, Kamiya H. The role of tachykinin NK1 receptors in the area postrema of ferrets in emesis. Neurosci Lett. 2000;286:123–6.

    Article  CAS  PubMed  Google Scholar 

  27. De Jonghe BC, Horn CC. Chemotherapy agent cisplatin induces 48-h fos expression in the brain of a vomiting species, the house musk shrew (Suncus murinus). Am J Physiol. 2009;296:R902–11.

    Google Scholar 

  28. Endo T, Minami MN, Hirafuji MM, Hamaue N, Omae N, Kang Y, Iwanaga T. Effects of granisetron and vagotomy on c-fos mRNA expression in the rat medulla oblongata as assessed by in situ hybridization. Biomed Res. 2004;25:229–35.

    Article  CAS  Google Scholar 

  29. Jin Y, Li X, Jiang C, Zhao J, Liu G, Li H, et al. An update in our understanding of the relationships between gene polymorphisms and chemotherapy-induced nausea and vomiting. Int J Gen Med. 2021;14:5879–92.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Hesketh P, Van Belle SAM, Tattersall FD, Naylor RJ, Hargreaves R, Carides AD, Evans JK, Horgan KJ. Differential involvement of neurotransmitters through the time course of cisplatin-induced emesis as revealed by therapy with specific receptor antagonists. Eur J Cancer. 2003;39:1074–80.

    Article  CAS  PubMed  Google Scholar 

  31. Limebeer CL, Rock EM, Sharkey KA, Parker LA. Nausea-induced 5-HT release in the interoceptive insular cortex and regulation by monoacylglycerol lipase (MAGL) inhibition and cannabidiol. eNeuro. 2018;5(4):e0256-18.2018

    Article  Google Scholar 

  32. Johnston KD, Lu Z, Rudd JA. Looking beyond 5-HT3 receptors: a review of the wider role of serotonin in the pharmacology of nausea and vomiting. Eur J Pharmacol. 2014;722:13–25.

    Article  CAS  PubMed  Google Scholar 

  33. Carpenter MB. Connectivity patterns of thalamic nuclei implicated in dyskinesia (Part 1 of 2). Stereotact Funct Neurosurg. 1989;52:79–102.

    Article  CAS  PubMed  Google Scholar 

  34. Duvernoy H, Risold P. The circumventricular organs: an atlas of comparative anatomy and vascularization. Brain Res Rev. 2007;56:119–47.

    Article  PubMed  Google Scholar 

  35. Yoshikawa T, Yoshida N, Hosoki K. Involvement of dopamine D3 receptors in the area postrema in R (+) 7-OH-DPAT induced emesis in the ferret. Eur J Pharmacol. 1996;301:143–9.

    Article  CAS  PubMed  Google Scholar 

  36. Higgins G, Kilpatrick G, Bunce K, Jones B, Tyers M. 5HT3 receptor antagonists injected into the area postrema inhibit cisplatin-induced emesis in the ferret. Br J Pharmacol. 2012;97:247–55.

    Article  Google Scholar 

  37. Migita K, Hori NS, Honda R, Takano K, Yamamoto Y, Kamiya HK. Effects of arginine-vasopressin on neuronal interaction from the area postrema to the nucleus tractus solitarius in rat brain slices. Folia Pharmacol Jpn. 1998;112:148–52.

    Article  Google Scholar 

  38. Ito H, Nishibayashi M, Kawabata K, Maeda S, Seki M, Ebukuro S. Induction of fos protein in neurons in the medulla oblongata after motion-and X-irradiation-induced emesis in musk shrews (Suncus murinus). Auton Neurosci. 2003;107:1–8.

    Article  CAS  PubMed  Google Scholar 

  39. Yamada Y, Tsukamoto G, Kobashi M, Sasaki A, Matsumura T. Abdominal vagi mediate c-fos expression induced by X-ray irradiation in the nucleus tractus solitarius of the rat. Auton Neurosci. 2000;83:29–36.

    Article  CAS  PubMed  Google Scholar 

  40. Yates B, Grelot L, Kerman I, Balaban C, Jakus J, Miller A. Organization of vestibular inputs to nucleus tractus solitarius and adjacent structures in cat brain stem. Am J Physiol. 1994;267:R974–83.

    CAS  PubMed  Google Scholar 

  41. Miller AD, Leslie RA. The area postrema and vomiting. Front Neuroendocrinol. 1994;15:301–20.

    Article  CAS  PubMed  Google Scholar 

  42. Rogers R, Hermann G, Travagli R. Brainstem pathways responsible for oesophageal control of gastric motility and tone in the rat. J Physiol. 1999;514:369–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Krowicki ZK, Hornby PJ. Substance P in the dorsal motor nucleus of the vagus evokes gastric motor inhibition via neurokinin 1 receptor in rat. J Pharmacol Exp Ther. 2000;293:214–21.

    CAS  PubMed  Google Scholar 

  44. Navari RM, Reinhardt RG, Kris RJ, Hesketh MG, Khojasteh PJ, Kindler A, Grote H, Pendergrass TH, Grunberg SMK. Reduction of cisplatin-induced emesis by a selective neurokinin-1–receptor antagonist. N Engl J Med. 1999;340:190–5.

    Article  CAS  PubMed  Google Scholar 

  45. Billig I, Yates B, Rinaman L. Plasma hormone levels and central c-fos expression in ferrets after systemic administration of cholecystokinin. Am J Physiol. 2001;281:R1243–55.

    CAS  Google Scholar 

  46. Lu Z, Chan SW, Tu L, Ngan MP, Rudd JA. GLP-1 receptors are involved in the GLP-1 (7–36) amide-induced modulation of glucose homoeostasis, emesis and feeding in Suncus murinus (house musk shrew). Eur J Pharmacol. 2020;888: 173528.

    Article  CAS  PubMed  Google Scholar 

  47. Ikegaya Y, Matsuki N. Vasopressin induces emesis in Suncus murinus. Jpn J Pharmacol. 2002;89:324–6.

    Article  CAS  PubMed  Google Scholar 

  48. Andrews PLR, Sanger GJ. Abdominal vagal afferent neurones: an important target for the treatment of gastrointestinal dysfunction. Curr Opin Pharmacol. 2002;2:650–6.

    Article  CAS  PubMed  Google Scholar 

  49. Hillsley K, Grundy D. Plasticity in the mesenteric afferent response to cisplatin following vagotomy in the rat. J Auton Ner. 1999;76:93–8.

    Article  CAS  Google Scholar 

  50. Minami M, Endo TH, Hamaue M, Liu N, Hiroshige Y, Nemoto T, Saito M, Yoshioka MH. Pharmacological aspects of anticancer drug-induced emesis with emphasis on serotonin release and vagal nerve activity. Pharmacol Ther. 2003;99:149–65.

    Article  CAS  PubMed  Google Scholar 

  51. Darmani N, Crim J. Delta-9-tetrahydrocannabinol differentially suppresses emesis versus enhanced locomotor activity produced by chemically diverse dopamine D2/D3 receptor agonists in the least shrew (Cryptotis parva). Pharmacol Biochem Behav. 2005;80:35–44.

    Article  CAS  PubMed  Google Scholar 

  52. Wood AJJ, Grunberg SM, Hesketh PJ. Control of chemotherapy-induced emesis. N Engl J Med. 1993;329:1790–6.

    Article  Google Scholar 

  53. Lucot J. Blockade of 5-hydroxytryptamine 3 receptors prevents cisplatin-induced but not motion-or xylazine-induced emesis in the cat. Pharmacol Biochem Behav. 1989;32:207–10.

    Article  CAS  PubMed  Google Scholar 

  54. Javid F, Naylor R. The effect of serotonin and serotonin receptor antagonists on motion sickness in Suncus murinus. Pharmacol Biochem Behav. 2002;73:979–89.

    Article  CAS  PubMed  Google Scholar 

  55. Andrews P, Naylor R, Joss R. Neuropharmacology of emesis and its relevance to anti-emetic therapy. Support Care Cancer. 1998;6:197–203.

    Article  CAS  PubMed  Google Scholar 

  56. Minami M. Endo T, Hamaue MN, Hirafuji M, Monama Y, Yajima T. Yoshioka M and Sailo H. How do toxic emetic stimuli cause 5-HT release in the gut and brain? Serotonin and the Scientific Basis of antiemetic therapy. Oxford Clinical Communications, Oxford London Philadelphia Sydney Melbourne; 1995. p. 68–76.

  57. Navari R. Management of chemotherapy-induced nausea and vomiting: focus on newer agents and new uses for older agents. Drugs. 2013;73(3):249–62.

    Article  CAS  PubMed  Google Scholar 

  58. Ullah I, Subhan F, Ayaz M, Shah R, Ali G, Haq IU, et al. Anti-emetic mechanisms of Zingiber officinale against cisplatin-induced emesis in the pigeon; behavioral and neurochemical correlates. BMC Complement Altern Med. 2015;15:34–42.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Amin A, Crawford T, Gaddum JH. The distribution of substance P and 5-hydroxytryptamine in the central nervous system of the dog. J Physiol. 1954;126:596–618.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Yamakuni H, Sawai-Nakayama H, Imazumi K, Maeda Y, Matsuo M, Manda T, et al. Resiniferatoxin antagonizes cisplatin-induced emesis in dogs and ferrets. Eur J Pharmacol. 2002;442:273–8.

    Article  CAS  PubMed  Google Scholar 

  61. Andrews P, Rudd J. The role of tachykinins and the tachykinin NK1 receptor in nausea and emesis. In: Tachykinins. Berlin, Heidelberg: Springer; 2004. p. 359–440.

  62. Darmani NA, Crim JL, Janoyan JJ, Abad J, Ramirez J. A re-evaluation of the neurotransmitter basis of chemotherapy-induced immediate and delayed vomiting: evidence from the least shrew. Brain Res. 2009;1248:40–58.

    Article  CAS  PubMed  Google Scholar 

  63. Missale C, Nash SR, Robinson SW, Jaber M, Caron MG. Dopamine receptors: from structure to function. Physiol Rev. 1998;78:189–225.

    Article  CAS  PubMed  Google Scholar 

  64. Ferrari LR, Donlon JV. Metoclopramide reduces the incidence of vomiting after tonsillectomy in children. Anesth Analg. 1992;75:351–4.

    Article  CAS  PubMed  Google Scholar 

  65. Ullah I, Subhan F, Rudd JA, Rauf K, Alam J, Shahid M, et al. Attenuation of cisplatin-induced emetogenesis by standardized Bacopa monniera extracts in the pigeon: behavioral and neurochemical correlations. Planta Med. 2014;80:1569–79.

    Article  CAS  PubMed  Google Scholar 

  66. Ullah I, Subhan F, Alam J, Shahid M, Ayaz M. Suppression of cisplatin-induced vomiting by Cannabis sativa in pigeons: neurochemical evidences. Front Pharmacol. 2018;9:231.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Herrstedt J. Antiemetic research: a look to the future. Support Care Cancer. 1997;6:8–12.

    Article  Google Scholar 

  68. Yamamoto K, Chan SW, Rudd JA, Lin G, Asano K, Yamatodani A. Involvement of hypothalamic glutamate in cisplatin-induced emesis in Suncus murinus (house musk shrew). J Pharmacol Sci. 2009;109:631–4.

    Article  CAS  PubMed  Google Scholar 

  69. Grunberg SM, Koeller JM. Palonosetron: a unique 5-HT3-receptor antagonist for the prevention of chemotherapy-induced emesis. Expert Opin Pharmacol. 2003;4:2297–303.

    Article  CAS  Google Scholar 

  70. Ray A, Chebolu S, Darmani N. Receptor-selective agonists induce emesis and fos expression in the brain and enteric nervous system of the least shrew (Cryptotis parva). Pharmacol Biochem Behav. 2009;94:211–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Clark D, White FJ. Review: D1 dopamine receptor—the search for a function: a critical evaluation of the D1/D2 dopamine receptor classification and its functional implications. Synapse. 1987;1:347–88.

    Article  CAS  PubMed  Google Scholar 

  72. Andrews P, Davis C, Bingham S, Davidson H, Hawthorn J, Maskell L. The abdominal visceral innervation and the emetic reflex: pathways, pharmacology, and plasticity. Can J Physiol Pharmacol. 1990;68:325–45.

    Article  CAS  PubMed  Google Scholar 

  73. King GL. Animal models in the study of vomiting. Can J Physiol Pharmacol. 1990;68:260–8.

    Article  CAS  PubMed  Google Scholar 

  74. Yoshida N, Yoshikawa T, Hosoki K. A dopamine D3 receptor agonist, 7-OH-DPAT, causes vomiting in the dog. Life Sci. 1995;57:PL347–50.

    Article  CAS  PubMed  Google Scholar 

  75. Darmani N, Zhao W, Ahmad B. The role of D2 and D3 dopamine receptors in the mediation of emesis in Cryptotis parva (the least shrew). J Neural Tran. 1999;106:1045–61.

    Article  CAS  Google Scholar 

  76. Osinski MU, Miller LNME, Seifert TS, Nakane TK, Cox BM, Brioni J, Moreland R. Dopamine D2, but not D4, receptor agonists are emetogenic in ferrets. Pharmacol Biochem Behav. 2005;81:211–9.

    Article  CAS  PubMed  Google Scholar 

  77. Torii Y, Saito H, Matsuki N. 5-Hydroxytryptamine is emetogenic in the house musk shrew (Suncus murinus). Naunyn-Schmiedeberg’s Archives Pharmacol. 1991;344:564–7.

    Article  CAS  Google Scholar 

  78. Humphrey P, Hartig P, Hoyer D. A proposed new nomenclature for 5-HT receptors. Trends Pharmacol Sci. 1993;14:233–6.

    Article  CAS  PubMed  Google Scholar 

  79. Feighner JP, Boyer WF. Serotonin-1A anxiolytics: an overview. Psychopathology. 1989;22(suppl 1):21–6.

    Article  PubMed  Google Scholar 

  80. Lucot JB. Effects of serotonin antagonists on motion sickness and its suppression by 8-OH-DPAT in cats. Pharmacol Biochem Behav. 1990;37:283–7.

    Article  CAS  PubMed  Google Scholar 

  81. Lucot JB. Antiemetic effects of flesinoxan in cats: comparisons with 8-hydroxy-2-(di-n-propylamino) tetralin. Eur J Pharmacol. 1994;253:53–60.

    Article  CAS  PubMed  Google Scholar 

  82. Bolognini D, Rock EM, Cluny NL, Cascio MG, Limebeer CL, Duncan M, et al. Cannabidiolic acid prevents vomiting in Suncus murinus and nausea-induced behaviour in rats by enhancing 5-HT1A receptor activation. Br J Pharmacol. 2012;168:1456–70.

    Article  Google Scholar 

  83. Boyd EM, Cassell WA. Agents affecting apomorphine-induced vomiting. J Pharmacol Exp Ther. 1957;119:390–4.

    CAS  PubMed  Google Scholar 

  84. Talley N. 5-hydroxytryptamine agonists and antagonists in the modulation of gastrointestinal motility and sensation: clinical implications. Aliment Pharmacol Ther. 1992;6:273–89.

    Article  CAS  PubMed  Google Scholar 

  85. Tonini M, Candura SM, Messori E, Rizzi CA. Therapeutic potential of drugs with mixed 5-HT4 agonist/5-HT3 antagonist action in the control of emesis. Pharmacol Res. 1995;31:257–60.

    Article  CAS  PubMed  Google Scholar 

  86. Maggi CA. The mammalian tachykinin receptors. General Pharmacol. 1995;26:911–44.

    Article  CAS  Google Scholar 

  87. Hesketh P. Potential role of the NK1 receptor antagonists in chemotherapy-induced nausea and vomiting. Support Care Cancer. 2001;9:350–4.

    Article  CAS  PubMed  Google Scholar 

  88. Diemunsch P, Grelot L. Potential of substance P antagonists as antiemetics. Drugs. 2000;60:533–46.

    Article  CAS  PubMed  Google Scholar 

  89. Roila F, Molassiotis A, Herrstedt J, Aapro M, Gralla R, Bruera E, et al. 2016 MASCC and ESMO guideline update for the prevention of chemotherapy-and radiotherapy-induced nausea and vomiting and of nausea and vomiting in advanced cancer patients. Ann Oncol. 2016;27:v119–33.

    Article  CAS  PubMed  Google Scholar 

  90. Azzoli CG, Giaccone G, Temin S. American society of clinical oncology clinical practice guideline update on chemotherapy for stage IV non–small-cell lung cancer. J Oncol Pract. 2010;6:39–43.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Pollard H, Moreau J, Arrang J, Schwartz J. A detailed autoradiographic mapping of histamine H3 receptors in rat brain areas. Neurosci. 1993;52:169–89.

    Article  CAS  Google Scholar 

  92. Saleem U, Akhtar R, Anwar F, Shah MA, Chaudary Z, Ayaz M, et al. Neuroprotective potential of Malva neglecta is mediated via down-regulation of cholinesterase and modulation of oxidative stress markers. Metab Brain Dis. 2021;36:889–900.

    Article  CAS  PubMed  Google Scholar 

  93. Akbar S, Subhan F, Shahid M, Wadood A, Shahbaz N, Farooq U, et al. 6-Methoxyflavanone abates cisplatin-induced neuropathic pain apropos anti-inflammatory mechanisms: a behavioral and molecular simulation study. Eur J Pharmacol. 2020;872: 172972.

    Article  CAS  PubMed  Google Scholar 

  94. Mahnashi MH, Ayaz M, Alqahtani YS, Alyami BA, Shahid M, Alqahtani O, et al. Quantitative-HPLC-DAD polyphenols analysis, anxiolytic and cognition enhancing potentials of Sorbaria tomentosa Lindl. Rehder. J Ethnopharmacol. 2023;317:116786.

    Article  CAS  PubMed  Google Scholar 

  95. Gralla RJ, Osoba DK, Kirkbride MG, Hesketh P, Chinnery PJ, Clark-Snow LW, Gill R, Groshen SDP, Grunberg S, Koeller JMM, Perez GR, Silber EA, Pfister DGJH. Recommendations for the use of antiemetics: evidence-based, clinical practice guidelines. American society of clinical oncology. J Clin Oncol. 1999;17:2971–94.

    Article  CAS  PubMed  Google Scholar 

  96. Darmani N, Pandya D. Involvement of other neurotransmitters in behaviors induced by the cannabinoid CB1 receptor antagonist SR 141716A in naive mice. J Neural Tran. 2000;107:931–45.

    Article  CAS  Google Scholar 

  97. Ferrari F, Ottani A, Giuliani D. Cannabimimetic activity in rats and pigeons of HU 210, a potent antiemetic drug. Pharmacol Biochem Behav. 1999;62:75–80.

    Article  CAS  PubMed  Google Scholar 

  98. Darmani NA, Janoyan JJ, Crim J, Ramirez J. Receptor mechanism and antiemetic activity of structurally diverse cannabinoids against radiation-induced emesis in the Least shrew. Eur J Pharmacol. 2007;563:187.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Darmani NA, Sim-Selley LJMBR, Janoyan JJ, Crim JL, Parekh B, Breivogel CS. Antiemetic and motor-depressive actions of CP55, 940: cannabinoid CB1 receptor characterization, distribution, and G-protein activation. Eur J Pharmacol. 2003;459:83–95.

    Article  CAS  PubMed  Google Scholar 

  100. Van Sickle MD, Oland LD, Ho W, Hillard CJ, Mackie K, Davison JS, et al. Cannabinoids inhibit emesis through CB1 receptors in the brainstem of the ferret. Gastroenterol. 2001;121:767–74.

    Article  Google Scholar 

  101. Boesmans W, Ameloot K, Van den Abbeel V, Tack J, Vanden BP. Cannabinoid receptor 1 signalling dampens activity and mitochondrial transport in networks of enteric neurones. Neurogastroenterol Motil. 2009;21:958-e77.

    Article  CAS  PubMed  Google Scholar 

  102. Coutts AA, Pertwee RG. Evidence that cannabinoid-induced inhibition of electrically evoked contractions of the myenteric plexus-longitudinal muscle preparation of guinea-pig small intestine can be modulated by Ca2+ and cAMP. Can J Physiol Pharmacol. 1998;76:340–6.

    Article  CAS  PubMed  Google Scholar 

  103. Andrei VD, Thomas CT, Bret NS. Cannabinoids suppress synaptic input to neurones of the rat dorsal motor nucleus of the vagus nerve. J Physiol. 2004;559:923–38.

  104. Szabo B, Schlicker E. Effects of cannabinoids on neurotransmission. In: Cannabinoids. Berlin, Heidelberg: Springer; 2005. p. 327–65.

    Chapter  Google Scholar 

  105. Chan SW, Lin G, Yew DTW, Yeung CK, Rudd JA. Separation of emetic and anorexic responses of exendin-4, a GLP-1 receptor agonist in Suncus murinus (house musk shrew). Neuropharmacol. 2013;70:141–7.

    Article  CAS  Google Scholar 

  106. Ueno H, Nakazato M. Mechanistic relationship between the vagal afferent pathway, central nervous system and peripheral organs in appetite regulation. J diabetes investig. 2016;7:812–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Jin SL, Han V, Simmons J, Towle A, Lauder J, Lund P. Distribution of glucagonlike peptide I (GLP-I), glucagon, and glicentin in the rat brain: an immunocytochemical study. J Comp Neurol. 1988;271:519–32.

    Article  CAS  PubMed  Google Scholar 

  108. Larsen PJ, Tang-Christensen M, Holst JJ, Ørskov C. Distribution of glucagon-like peptide-1 and other preproglucagon-derived peptides in the rat hypothalamus and brainstem. Neuroscience. 1997;77:257–70.

    Article  CAS  PubMed  Google Scholar 

  109. Rinaman L. A functional role for central glucagon-like peptide-1 receptors in lithium chloride-induced anorexia. Am J Physiol. 1999;277:R1537–40.

    CAS  PubMed  Google Scholar 

  110. Suzuki Y, Yoshimaru T, Inoue T, Ra C. Cav1.2 L-type Ca2+ channel protects mast cells against activation-induced cell death by preventing mitochondrial integrity disruption. Mol Immunol. 2009;46:2370–80.

    Article  CAS  PubMed  Google Scholar 

  111. Zhong W, Chebolu S, Darmani NA. Broad-spectrum antiemetic efficacy of the L-type calcium channel blocker amlodipine in the least shrew (Cryptotis parva). Pharmacol Biochem Behav. 2014;120:124–32.

    Article  CAS  PubMed  Google Scholar 

  112. Lomax RB, Gallego S, Novalbos J, García AG, Warhurst G. L-type calcium channels in enterochromaffin cells from guinea pig and human duodenal crypts: an in situ study. Gastroenterology. 1999;117:1363–9.

    Article  CAS  PubMed  Google Scholar 

  113. Gómez-Viquez NL, Guerrero-Serna G, Arvizu F, García U, Guerrero-Hernández A. Inhibition of SERCA pumps induces desynchronized RyR activation in overloaded internal Ca2+ stores in smooth muscle cells. Ame J Physiol. 2010;298:C1038–46.

    Article  Google Scholar 

  114. Gómez-Viquez L, Guerrero-Serna G, García U, Guerrero-Hernández A. SERCA pump optimizes Ca2+ release by a mechanism independent of store filling in smooth muscle cells. Biophys J. 2003;85:370–80.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Zhong W, Chebolu S, Darmani NA. Thapsigargin-induced activation of Ca2+-CaMKII-ERK in brainstem contributes to substance P release and induction of emesis in the least shrew. Neuropharmacol. 2016;103:195–210.

    Article  CAS  Google Scholar 

  116. Van Geldre LA, Lefebvre RA. Nitrergic relaxation in rat gastric fundus: influence of mechanism of induced tone and possible role of sarcoplasmic/endoplasmic reticulum Ca2+ ATPase. Life Sci. 2004;74:3259–74.

    Article  PubMed  Google Scholar 

  117. Hargreaves AC, Gunthorpe MJ, Taylor CW, Lummis S. Direct inhibition of 5-hydroxytryptamine3 receptors by antagonists of L-type Ca2+ channels. Mol Pharmacol. 1996;50:1284–94.

    CAS  PubMed  Google Scholar 

  118. Hutchinson TE, Zhong W, Chebolu S, Wilson SM, Darmani NA. L-type calcium channels contribute to 5-HT3-receptor-evoked CaMKIIα and ERK activation and induction of emesis in the least shrew (Cryptotis parva). Eur J Pharmacol. 2015;755:110–8.

    Article  CAS  PubMed  Google Scholar 

  119. Navari RM, Einhorn LH, Loehrer PJ, Passik SD, Vinson J, McClean J, et al. A phase II trial of olanzapine, dexamethasone, and palonosetron for the prevention of chemotherapy-induced nausea and vomiting: a Hoosier oncology group study. Support Care Cancer. 2007;15:1285–91.

    Article  PubMed  Google Scholar 

Download references

Funding

No funding agency financially supported the current work.

Author information

Authors and Affiliations

Authors

Contributions

IU and MA conceptualized the idea, wrote the manuscript, and revised it. Both authors agree on the current submission.

Corresponding authors

Correspondence to Ihsan Ullah or Muhammad Ayaz.

Ethics declarations

Conflict of interest

Authors declare no conflict of interest.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Both authors IU and MA are aware of the current submission. Both authors have read and approved the current paper for submission.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ullah, I., Ayaz, M. A re-consideration of neural/receptor mechanisms in chemotherapy-induced nausea and vomiting: current scenario and future perspective. Pharmacol. Rep 75, 1126–1137 (2023). https://doi.org/10.1007/s43440-023-00514-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43440-023-00514-z

Keywords

Navigation