Skip to main content

Advertisement

Log in

Anti-inflammatory activity of novel thiosemicarbazone compounds indole-based as COX inhibitors

  • Article
  • Published:
Pharmacological Reports Aims and scope Submit manuscript

Abstract

Background

In this article, a series of 20 new thiosemicarbazone derivatives containing indole were synthesized and evaluated for their anti-inflammatory potential.

Methods

The compounds were obtained through a synthetic route of only two steps, with yields that varied between 33.6 and 90.4%, and characterized by spectroscopic and spectrometric techniques.

Results

An initial screening through the lymphoproliferation assay revealed that compounds LT76, LT81, and LT87 were able to inhibit lymphocyte proliferation, with CC50 of 0.56 ± 0.036, 0.9 ± 0.01 and 0.5 ± 0.07 µM, respectively, better results than indomethacin (CC50 > 12 µM). In addition, these compounds were able to suppress the in-vitro production of TNF-α and NO, in addition to stimulating the production of IL-4. Reinforcing in-vitro assays, the compounds were able to inhibit COX-2 similar to Celecoxib showing greater selectivity for this isoform (LT81 SI: 23.06 versus Celecoxib SI: 11.88). Animal studies showed that compounds LT76 (64.8% inhibition after 6 h), LT81 (89% inhibition after 6 h) and LT87 (100% inhibition after 4 h) were able to suppress edema in mice after inoculation carrageenan with greater potency than indomethacin, and immunohistochemistry revealed that the groups treated with LT76, LT81 and LT87 reduced the expression of COX-2, similar or better results when compared to indomethacin. Complementarily, in-silico studies have shown that these compounds have a good pharmacokinetic profile, for respecting the parameters of Lipinski and Veber, showing their good bioavailability.

Conclusions

These results demonstrate the potency of thiosemicarbazone derivatives containing indole and confirm their importance as scaffolds of molecules with notorious anti-inflammatory activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Yeung YT, Aziz F, Guerrero-Castilla A, Argüelles S. Signaling pathways in inflammation and anti-inflammatory therapies. Curr Pharm Des. 2018;24:1449–84. https://doi.org/10.2174/1381612824666180327165604.

    Article  CAS  PubMed  Google Scholar 

  2. Singh P, Kaur S, Sharma A, Kaur G, Bhatti R. TNF-α and IL-6 inhibitors: Conjugates of N-substituted indole and aminophenylmorpholin-3-one as anti-inflammatory agents. Eur J Med Chem. 2017;140:92–103. https://doi.org/10.1016/j.ejmech.2017.09.003.

    Article  CAS  PubMed  Google Scholar 

  3. Sedger LM, McDermott MF. TNF and TNF-receptors: From mediators of cell death and inflammation to therapeutic giants—past, present and future. Cytokine Growth Factor Rev. 2014;25:453–72. https://doi.org/10.1016/j.cytogfr.2014.07.016.

    Article  CAS  PubMed  Google Scholar 

  4. Cruvinel WM, Mesquita-Júnior D, Araújo JAP, Catelan TTT, de Souza AWS, da Silva NP, et al. Immune system—part I Fundamentals of innate immunity with emphasis on molecular and cellular mechanisms of inflammatory response. Rev Bras Reumatol. 2010;50:434–61. https://doi.org/10.1590/S0482-50042010000400008.

    Article  Google Scholar 

  5. Gouvea DP, Vasconcellos FA, Berwaldt GA, Seixas-Neto ACP, Fischer G, Sakata RP, et al. 2-Aryl-3-(2-morpholinoethyl)thiazolidin-4-ones: synthesis, antiinflammatory in vivo, cytotoxicity in vitro and molecular docking studies. Eur J Med Chem. 2016;18:259–65. https://doi.org/10.1016/j.ejmech.2016.04.028.

    Article  CAS  Google Scholar 

  6. Buono MD, Abbate A, Toldo S. Interplay of inflammation, oxidative stress and cardiovascular disease in rheumatoid arthritis. Heart. 2018;104:1991–2. https://doi.org/10.1136/heartjnl-2018-313313.

    Article  CAS  PubMed  Google Scholar 

  7. Abdellatif KRA, Abdelgawad MA, Elshemy HAH, Alsayed SSR. Design, synthesis and biological screening of new 4-thiazolidinone derivatives with promising COX-2 selectivity, anti-inflammatory activity and gastric safety profile. Bioorg Chem. 2016;64:1–12. https://doi.org/10.1016/j.bioorg.2015.11.001.

    Article  CAS  PubMed  Google Scholar 

  8. Abdel-Aziz AAM, El-Azab AS, Abou-Zeid LA, ElTahir KEH, Abdel-Aziz NI, Ayyad RR, et al. Synthesis, anti-inflammatory, analgesic and COX-1/2 inhibition activities of anilides based on 5,5-diphenylimidazolidine-2,4-dione scaffold: molecular docking studies. Eur J Med Chem. 2016;115:121–31. https://doi.org/10.1016/j.ejmech.2016.03.011.

    Article  CAS  PubMed  Google Scholar 

  9. Al-Hourani BJ, Sharma SK, Mane JY, Tuszynski J, Baracos V, Kniess T, et al. Synthesis and evaluation of 1,5-diaryl-substituted tetrazoles a novel selective cyclooxygenase-2 (COX-2) inhibitors. Bioorg Med Chem Lett. 2011;21:1823–6. https://doi.org/10.1016/j.bmcl.2011.01.057.

    Article  CAS  PubMed  Google Scholar 

  10. Rajakariar R, Yaqoob MM, Gilroy DW. COX-2 in Inflammation and Resolution. Mol Interv. 2006;6:199–207. https://doi.org/10.1124/mi.6.4.6.

    Article  CAS  PubMed  Google Scholar 

  11. Dadashpour S, Emami S. Indole in the target-based design of anticancer agents: a versatile scaffold with diverse mechanisms. Eur J Med Chem. 2018;150:9–29. https://doi.org/10.1016/j.ejmech.2018.02.065.

    Article  CAS  PubMed  Google Scholar 

  12. Huang Y, Zhang B, Li J, Liu H, Zhang Y, Yang Z, et al. Design, synthesis, biological evaluation and docking study of novel indole-2-amide as anti-inflammatory agents with dual inhibition of COX and 5-LOX. Eur J Med Chem. 2019;180:41–50. https://doi.org/10.1016/j.ejmech.2019.07.004.

    Article  CAS  PubMed  Google Scholar 

  13. Oliveira JF, Nonato FR, Zafred RRT, Leite NMS, Ruiz ALTG, de Carvalho JE, et al. Evaluation of anti-inflammatory effect of derivative (E)-N-(4-bromophenyl)-2-(thiophen-2-ylmethylene)-thiosemicarbazone. Biomed Pharmacother. 2016;80:388–92. https://doi.org/10.1016/j.biopha.2016.03.047.

    Article  CAS  PubMed  Google Scholar 

  14. Moraes ADTO, de Miranda MDS, Jacob ITT, Amorim CAC, de Moura RO, da Silva SAS, et al. Synthesis, in vitro and in vivo biological evaluation, COX-1/2 inhibition and molecular docking study of indole-N-acylhydrazone derivatives. Bioorg Med Chem. 2018;26:5388–96. https://doi.org/10.1016/j.bmc.2018.07.024.

    Article  CAS  PubMed  Google Scholar 

  15. Oliveira JF, da Silva AL, Vendramini-Costa DB, Amorim CAC, Campos JF, Ribeiro AG, et al. Synthesis of thiophene-thiosemicarbazone derivatives and evaluation of their in vitro and in vivo antitumor activities. Eur J Med Chem. 2015;104:148–56. https://doi.org/10.1016/j.ejmech.2015.09.036.

    Article  CAS  PubMed  Google Scholar 

  16. Oliveira JF, Lima TS, Vendramini-Costa DB, Pedrosa SCBL, Lafayette EA, da Silva RMF, et al. Thiosemicarbazones and 4-thiazolidinones indole-based derivatives: synthesis, evaluation of antiproliferative activity, cell death mechanisms and topoisomerase inhibition assay. Eur J Med Chem. 2017;136:305–14. https://doi.org/10.1016/j.ejmech.2017.05.023.

    Article  CAS  PubMed  Google Scholar 

  17. Plutín AM, Alvarez A, Mocelo R, Ramos R, Castellano EE, Silva MM, et al. Palladium(II)/N, N-disubstituted-N′-acylthioureas complexes as anti-Mycobacterium tuberculosis and anti-Trypanosoma cruzi agents. Polyhedron. 2017;132:70–7. https://doi.org/10.1016/j.poly.2017.05.003.

    Article  CAS  Google Scholar 

  18. Silva DN, Souza BSF, Azevedo CM, Vasconcelos JF, Carvalho RH, Soares MBP, et al. Intramyocardial transplantation of cardiac mesenchymal stem cells reduces myocarditis in a model of chronic Chagas disease cardiomyopathy. Stem Cell Res Ther. 2014;5:1–10. https://doi.org/10.1186/scrt470.

    Article  CAS  Google Scholar 

  19. Ayoub SS, Flower RJ, Seed M. Cyclooxygenases: Methods and Protocols, Methods in Molecular Biology. Hoboken: Humana Press; 2010.

    Book  Google Scholar 

  20. Ding AH, Nathan CF, Stuehr DJ. Release of reactive nitrogen intermediates and reactive oxygen intermediates from mouse peritoneal macrophages. Comparison of activating cytokines and evidence for independent production. J Immunol. 1988;141:2407–12.

    CAS  PubMed  Google Scholar 

  21. OECD (2002) Guidance Document on acute oral toxicity testing

  22. OECD (2000) Guidance document on the recognition, assessment and use of clinical signs as humane endpoints for experimental animals used in safety evaluation

  23. Winter CA, Risley EA, Nuss GW. Carrageenin-induced edema in hind paw of the rat as an assay for antiinflammatory drugs. Exper Bio Med. 1962;111:544–7. https://doi.org/10.3181/00379727-111-27849.

    Article  CAS  Google Scholar 

  24. Barbosa KPS, Santos LAM, Ribeiro EL, Fragoso IT, Rocha SWS, Nunes AKS, et al. Reduction of carrageenan-induced acute pulmonary inflammation in mice by novel thiazolidinedione derivative LPSF/RA-4. Eur J Pharmacol. 2013;718:197–205. https://doi.org/10.1016/j.ejphar.2013.08.033.

    Article  CAS  PubMed  Google Scholar 

  25. Daina A, Michielin O, Zoete V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep. 2017;7:42717. https://doi.org/10.1038/srep42717.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Pires DEV, Blundell TL, Ascher DB. pkCSM: Predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. J Med Chem. 2015;58:4066–72. https://doi.org/10.1021/acs.jmedchem.5b00104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bharti N, Shailendra Sharma S, Naqvi F, Azam A. New palladium (II) complexes of 5-nitrothiophene-2-carboxaldehyde thiosemicarbazones: synthesis, spectral studies and in vitro anti-amoebic activity. Bioorg Med Chem. 2003;11:2923–9. https://doi.org/10.1016/S0968-0896(03)00213-X.

    Article  CAS  PubMed  Google Scholar 

  28. Silva LMMG, de Oliveira JF, Silva WL, da Silva AL, Almeida-Junior ASA, dos Santos VHB, et al. New 1,3-benzodioxole derivatives: synthesis, evaluation of in vitro schistosomicidal activity and ultrastructural analysis. Chem Biol Interact. 2018;283:20–9. https://doi.org/10.1016/j.cbi.2018.01.016.

    Article  CAS  PubMed  Google Scholar 

  29. Silva PR, de Oliveira JF, da Silva AL, Queiroz CM, Feitosa APS, Duarte DMFA, et al. Novel indol-3-yl-thiosemicarbazone derivatives: obtaining, evaluation of in vitro leishmanicidal activity and ultrastructural studies. Chem Biol Interact. 2020;315:108899. https://doi.org/10.1016/j.cbi.2019.108899.

    Article  CAS  PubMed  Google Scholar 

  30. Ribeiro AG, Almeida SMV, Oliveira JF, Souza TRCL, Santos KL, Albuquerque APB, et al. Novel 4-quinoline-thiosemicarbazone derivatives: synthesis, antiproliferative activity, in vitro and in silico biomacromolecule interaction studies and topoisomerase inhibition. Eur J Med Chem. 2019;82:111592. https://doi.org/10.1016/j.ejmech.2019.111592.

    Article  CAS  Google Scholar 

  31. He Z, Qiao H, Yang F, Zhou W, Gong Y, Zhang X, et al. Novel thiosemicarbazone derivatives containing indole fragment as potent and selective anticancer agent. Eur J Med Chem. 2019;184:111764. https://doi.org/10.1016/j.ejmech.2019.111764.

    Article  CAS  PubMed  Google Scholar 

  32. Horváth S. Cytotoxicity of drugs and diverse chemical agents to cell cultures. Toxicology. 1980;16:59–66. https://doi.org/10.1016/0300-483x(80)90110-9.

    Article  PubMed  Google Scholar 

  33. Vandresen F, Falzirolli H, Batista SAA, da Silva-Giardini APB, de Oliveira DN, Catharino RR, et al. Novel R-(±)-limonene-based thiosemicarbazones and their antitumor activity against human tumor cell lines. Eur J Med Chem. 2014;79:110–6. https://doi.org/10.1016/j.ejmech.2014.03.086.

    Article  CAS  PubMed  Google Scholar 

  34. Subhashree GR, Haribabu J, Saranya S, Yuvaraj P, Krishnan DA, Karvembu R, et al. In vitro antioxidant, anti-inflammatory and in silico molecular docking studies of thiosemicarbazones. J Mol Struct. 2017;11455:160–9. https://doi.org/10.1016/j.molstruc.2017.05.054.

    Article  CAS  Google Scholar 

  35. Gao J, Lauer FT, Dunaway S, Burchiel SW. Cytochrome P450 1B1 is required for 7,12-dimethylbenz(a)-anthracene (DMBA) induced spleen cell immunotoxicity. Toxicol Sci. 2005;86:68–74. https://doi.org/10.1093/toxsci/kfi176.

    Article  CAS  PubMed  Google Scholar 

  36. Mosmann TR, Coffman RL. TH1 and TH2 cells: different patterns of lymphokine secretion lead to different functional properties. Annu Rev Immunol. 1989;7:145–73. https://doi.org/10.1146/annurev.iy.07.040189.001045.

    Article  CAS  PubMed  Google Scholar 

  37. Cheng X, Liao YH, Ge H, Li B, Zhang J, Yuan J, et al. Th1/Th2 functional imbalance after acute myocardial infarction: coronary arterial inflammation or myocardial inflammation. J Clin Immunol. 2005;25:246–53. https://doi.org/10.1007/s10875-005-4088-0.

    Article  CAS  PubMed  Google Scholar 

  38. Linde A, Mosier D, Blecha F, Melgarejo T. Innate immunity and inflammation—new frontiers in comparative cardiovascular pathology. Cardiovasc Res. 2007;73:26–36. https://doi.org/10.1016/j.cardiores.2006.08.009.

    Article  CAS  PubMed  Google Scholar 

  39. Tracey KJ, Cerami A. Tumor necrosis factor and regulation of metabolism in infection: role of systemic versus tissue levels. Proc Soc Exp Biol Med. 1992;200:233–9. https://doi.org/10.3181/00379727-200-43426.

    Article  CAS  PubMed  Google Scholar 

  40. Giacomelli R, Afeltra A, Alunno A, Baldini C, Bartoloni-Bocci E, Berardicurti O, et al. International consensus: What else can we do to improve diagnosis and therapeutic strategies in patients affected by autoimmune rheumatic diseases (rheumatoid arthritis, spondyloarthritides, systemic sclerosis, systemic lupus erythematosus, antiphospholipid syndrome and Sjogren’s syndrome)? The unmet needs and the clinical grey zone in autoimmune disease management. Autoimmun Rev. 2017;16:911–24. https://doi.org/10.1016/j.autrev.2017.07.012.

    Article  PubMed  Google Scholar 

  41. Cardoso MVO, Moreira DRM, Oliveira-Filho GB, Cavalcanti SMT, Coelho LCD, Espíndola JWP, et al. Design, synthesis and structure-activity relationship of phthalimides endowed with dual antiproliferative and immunomodulatory activities. Eur J Med Chem. 2015;96:491–503. https://doi.org/10.1016/j.ejmech.2015.04.041.

    Article  CAS  PubMed  Google Scholar 

  42. Sharma JN, Al-Omran A, Parvathy SS. Role of nitric oxide in inflammatory diseases. Inflammopharmacology. 2007;15:252–9. https://doi.org/10.1007/s10787-007-0013-x.

    Article  CAS  PubMed  Google Scholar 

  43. MacMicking J, Xie QW, Nathan C. Nitric oxide and macrophage function. Annu Rev Immunol. 1997;15:323–50. https://doi.org/10.1146/annurev.immunol.15.1.323.

    Article  CAS  PubMed  Google Scholar 

  44. Walsh JT, Hendrix S, Boato F, Smirnov I, Zheng J, Lukens JR, et al. MHCII-independent CD4+ T cells protect injured CNS neurons via IL-4. J Clin Invest. 2015;125:699–714. https://doi.org/10.1172/JCI76210.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Bel EH, Brinke AT. New anti-eosinophil drugs for asthma and COPD: targeting the trait! Chest. 2017;152:1276–82. https://doi.org/10.1016/j.chest.2017.05.019.

    Article  PubMed  Google Scholar 

  46. Simmons DL, Botting RM, Hla T. Cyclooxygenase isozymes: the biology of prostaglandin synthesis and inhibition. Pharmacol Rev. 2004;56:387–437. https://doi.org/10.1124/pr.56.3.3.

    Article  CAS  PubMed  Google Scholar 

  47. Gaetano G, Donati MB, Cerletti C. Prevention of thrombosis and vascular inflammation: benefits and limitations of selective or combined COX-1, COX-2 and 5-LOX inhibitors. Trends Pharmacol Sci. 2003;24:245–52. https://doi.org/10.1016/S0165-6147(03)00077-4.

    Article  CAS  PubMed  Google Scholar 

  48. Alanazi AM, El-Azab AS, Al-Suwaidan IA, El-Tahir KEH, Asiri YA, Abdel-Aziz NI, et al. Structure-based design of phthalimide derivatives as potential cyclooxygenase-2 (COX-2) inhibitors: anti-inflammatory and analgesic activities. Eur J Med Chem. 2015;92:115–23. https://doi.org/10.1016/j.ejmech.2014.12.039.

    Article  CAS  PubMed  Google Scholar 

  49. Warner TD, Mitchell JA. COX-2 selectivity alone does not define the cardiovascular risks associated with non-steroidal anti-inflammatory drugs. Lancet. 2008;371:270–3. https://doi.org/10.1016/S0140-6736(08)60137-3.

    Article  CAS  PubMed  Google Scholar 

  50. Singh P, Prasher P, Dhillon P, Bhatti R. Indole based peptidomimetics as anti-inflammatory and anti-hyperalgesic agents: dual inhibition of 5-LOX and COX-2 enzymes. Eur J Med Chem. 2015;975:104–23. https://doi.org/10.1016/j.ejmech.2015.04.044.

    Article  CAS  Google Scholar 

  51. Kaur J, Bhardwaj A, Huang Z, Knaus EE. N-1 and C-3 substituted indole Schiff bases as selective COX-2 inhibitors: synthesis and biological evaluation. Bioorg Med Chem Lett. 2012;22:2154–9. https://doi.org/10.1016/j.bmcl.2012.01.130.

    Article  CAS  PubMed  Google Scholar 

  52. Bansal Y, Silakari O. The therapeutic journey of benzimidazoles: a review. Bioorg Med Chem. 2012;20:6208–36. https://doi.org/10.1016/j.bmc.2012.09.013.

    Article  CAS  PubMed  Google Scholar 

  53. Asare GA, Addo P, Bugyei K, Gyan B, Adjei S, Otu-Nyarko LS, et al. Acute toxicity studies of aqueous leaf extract of Phyllanthus niruri. Interdiscip Toxicol. 2011;4:206–10. https://doi.org/10.2478/v10102-011-0031-9.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Matsumoto K, Obara S, Kuroda Y, Kizu J. Anti-inflammatory effects of linezolid on carrageenan-induced paw edema in rats. J Infect Chemother. 2015;21:889–91. https://doi.org/10.1016/j.jiac.2015.08.004.

    Article  CAS  PubMed  Google Scholar 

  55. Oyanagui Y. Participation of superoxide anions at the prostaglandin phase of carrageenan foot-oedema. Biochem Pharmacol. 1976;25:1465–72. https://doi.org/10.1016/0006-2952(76)90062-9.

    Article  CAS  PubMed  Google Scholar 

  56. Niu X, Li Y, Li W, Hu H, Yao H, Li H. The anti-inflammatory effects of Caragana tangutica ethyl acetate extract. J Ethnopharmacol. 2014;152:99–105. https://doi.org/10.1016/j.jep.2013.12.026.

    Article  CAS  PubMed  Google Scholar 

  57. Ishola IO, Agbaje EO, Adeyemi OO, Shukla R. Analgesic and anti-inflammatory effects of the methanol root extracts of some selected Nigerian medicinal plants. Pharm Biol. 2014;52:1208–16. https://doi.org/10.3109/13880209.2014.880487.

    Article  CAS  PubMed  Google Scholar 

  58. Song Z, Zhou Y, Zhang W, Zhan L, Yu Y, Chen Y, et al. Base promoted synthesis of novel indole-dithiocarbamate compounds as potential anti-inflammatory therapeutic agents for treatment of acute lung injury. Eur J Med Chem. 2019;171:54–65. https://doi.org/10.1016/j.ejmech.2019.03.022.

    Article  CAS  PubMed  Google Scholar 

  59. Tumer TB, Onder FC, Ipek H, Gungor T, Savranoglu S, Tok TT, et al. Biological evaluation and molecular docking studies of nitro benzamide derivatives with respect to in vitro anti-inflammatory activity. Int Immunopharmacol. 2017;43:129–39. https://doi.org/10.1016/j.intimp.2016.12.009.

    Article  CAS  PubMed  Google Scholar 

  60. Gómez-Rivera A, Aguilar-Mariscal H, Romero-Ceronio N, de la Fuente LFR, Lobato-García CE. Synthesis and anti-inflammatory activity of three nitro chalcones. Bioorg Med Chem Lett. 2013;23:5519–22. https://doi.org/10.1016/j.bmcl.2013.08.061.

    Article  CAS  PubMed  Google Scholar 

  61. Roriz BC, Buccini DF, dos Santos BF, Silva SRS, Domingues NLC, Moreno SE. Synthesis and biological activities of a nitro-shiff base compound as a potential anti-inflammatory agent. Eur J Pharm Sci. 2020;148:105300. https://doi.org/10.1016/j.ejps.2020.105300.

    Article  CAS  PubMed  Google Scholar 

  62. Rodrigues LB, Martins AOBPB, Ribeiro-Filho J, Cesário FRAS, Castro FF, de Albuquerque TR, et al. Anti-inflammatory activity of the essential oil obtained from Ocimum basilicum complexed with β-cyclodextrin (β-CD) in mice. Food Chem Toxicol. 2017;109:836–46. https://doi.org/10.1016/j.fct.2017.02.027.

    Article  CAS  PubMed  Google Scholar 

  63. Tai H, Miyaura C, Pilbeam CC, Tamura T, Ohsugi Y, Koishihara Y, et al. Transcriptional induction of cyclooxygenase-2 in osteoblasts is involved in interleukin-6-induced osteoclast formation. Endocrinology. 1997;138:2372–9. https://doi.org/10.1210/endo.138.6.5192.

    Article  CAS  PubMed  Google Scholar 

  64. Basu A, Das AS, Sharma M, Pathak MP, Chattopadhyay P, Biswas K, Mukhopadhyay R. STAT3 and NF-κB are common targets for kaempferol-mediated attenuation of COX-2 expression in IL-6-induced macrophages and carrageenan-induced mouse paw edema. Biochem Biophys Rep. 2017;12:54–61. https://doi.org/10.1016/j.bbrep.2017.08.005.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Hayashi S, Sumi Y, Ueno N, Murase A, Takada J. Discovery of a novel COX-2 inhibitor as an orally potent anti-pyretic and anti-inflammatory drug: design, synthesis, and structure–activity relationship. Biochem Pharmacol. 2011;82:755–68. https://doi.org/10.1016/j.bcp.2011.06.036.

    Article  CAS  PubMed  Google Scholar 

  66. Kassab SE, Khedr MA, Ali HI, Abdalla MM. Discovery of new indomethacin-based analogs with potentially selective cyclooxygenase-2 inhibition and observed diminishing to PGE2 activities. Eur J Med Chem. 2017;141:306–21. https://doi.org/10.1016/j.ejmech.2017.09.056.

    Article  CAS  PubMed  Google Scholar 

  67. Newby D, Freitas AA, Ghafourian T. Decision trees to characterise the roles of permeability and solubility on the prediction of oral absorption. Eur J Med Chem. 2015;90:751–65. https://doi.org/10.1016/j.ejmech.2014.12.006.

    Article  CAS  PubMed  Google Scholar 

  68. Veber DF, Johnson SR, Cheng HY, Smith BR, Ward KW, Kopple KD. Molecular properties that influence the oral bioavailability of drug candidates. J Med Chem. 2002;45:2615–23. https://doi.org/10.1021/jm020017n.

    Article  CAS  PubMed  Google Scholar 

  69. Artursson P, Karlsson J, Ocklind G, Schipper N. Studying transport processes in absorptive epithelia. In: Shaw AJ, editor. Epithelial cell culture: a practical approach. Oxford: IRL Press at Oxford University; 1996. p. 111–33.

    Google Scholar 

  70. Lambertucci C, Marucci G, Ben DD, Buccioni M, Spinaci A, Kachler S, Klotz KN, Volpini R, et al. New potent and selective A1 adenosine receptor antagonists as potential tools for the treatment of gastrointestinal diseases. Eur J Med Chem. 2018;151:199–213. https://doi.org/10.1016/j.ejmech.2018.03.067.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was supported by Brazilian agencies Fundação de Amparo Pesquisa do Estado de Pernambuco (FACEPE, Brazil—Grant no. APQ-0498-4.03/19) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, Grant no. 404264/2016-6).

Author information

Authors and Affiliations

Authors

Contributions

ÍTTJ: drafting the work. FOSG: drafting the work and critical review of article content. MDSM: drafting the work. SMVA: critical review of article content. IJC-F: drafting the work. CAP: analysis and interpretation of data for the work. TGS: analysis and interpretation of data for the work. DRMM: drafting the work. CMLM: analysis and interpretation of data for the work. JFO: design of the work and critical review of article content. MCAL: design of the work and final approval of the version to be published.

Corresponding authors

Correspondence to Jamerson F. de Oliveira or Maria C. A. de Lima.

Ethics declarations

Conflict of interest

The authors declare that there were no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 208522 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jacob, Í.T.T., Gomes, F.O.S., de Miranda, M.D.S. et al. Anti-inflammatory activity of novel thiosemicarbazone compounds indole-based as COX inhibitors. Pharmacol. Rep 73, 907–925 (2021). https://doi.org/10.1007/s43440-021-00221-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43440-021-00221-7

Keywords

Navigation