Skip to main content

Advertisement

Log in

Th1/Th2 Functional Imbalance After Acute Myocardial Infarction: Coronary Arterial Inflammation or Myocardial Inflammation

  • Published:
Journal of Clinical Immunology Aims and scope Submit manuscript

An Erratum to this article was published on 03 June 2014

Abstract

Objectives: The study clarified whether the T-helper (Th)1/Th2 imbalance existed only in coronary arterial inflammation or in both coronary arterial inflammation and myocardial inflammation and explored the significance of the imbalance of Th1/Th2 function after acute myocardial infarction (AMI). Background: There are two different inflammatory processes in patients with AMI: the coronary arterial inflammation that leads to the pathogenesis of AMI and the myocardial inflammation after AMI that leads to ventricular remodeling, which are positively and negatively regulated by Th1 and Th2 lymphocytes, respectively. Methods: Peripheral blood mononuclear cells from 33 AMI patients, 22 unstable angina (UA) patients and splenocytes from 35 AMI Wistar rats were collected. Cytokine-producing Th cells were ambulatorily monitored by 3-color flow cytometry. Interferon (IFN)-γ and interleukin (IL)-4 mRNA in the rat myocardium and chemokine receptors CCR3,CCR5 and CXCR3 mRNA on the surface of rat T-lymphocytes after AMI were measured by RT-PCR. Results: IFN-γ-producing T-cells significantly increased in patients with AMI and UA within 24 hours after the onset of symptom. The high ratio of IFN-γ-producing T-cells recovered 1 week after the onset in UA patients, while it could be examined 1 week and even 1 month after the onset in AMI patients. The up-regulation of Th1 cell function is consistent with bad heart function. There was no significant difference on the frequencies of IL-4-producing T-cells between each group. 1 week, 2 weeks and 1 month after AMI, IFN-γ mRNA increased in the myocardium of rats, but there was no significant change on global Th cell functions. Conclusions: Th1/Th2 functional imbalance exists in both coronary arterial inflammation and myocardial inflammation processes. The up-regulation of Th1 cell-functions may participate in the immune-mediated ventricular remodeling after AMI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jonasson L, Holm J, Skalli O, Bondjers G, Hansson GK: Regional accumulations of T-cells, macrophages, and smooth muscle cells in the human atherosclerotic plaque. Arteriosclerosis 6:131–138, 1986

    CAS  PubMed  Google Scholar 

  2. Entman ML, Ballantyne CM: Inflammation in acute coronary syndromes. Circulation 88:800–803, 1993

    CAS  PubMed  Google Scholar 

  3. Buja LM, Willerson JT: Role of inflammation in coronary plaque disruption. Circulation 89:503–505, 1994

    CAS  PubMed  Google Scholar 

  4. Semeri GG, Abbate R, Gori AM, Attanasio M, Martini F, Giusti B, Dabizzi P, Poggesi L, Modesti PA, Trotta F: Transient intermittent lymphocyte activation is responsible for the instability of angina. Circulation 86:790–797, 1992

    PubMed  Google Scholar 

  5. Neri Serneri GG, Prisco D, Martini F, Gori AM, Brunelli T, Poggesi L, Rostagno C, Gensini GF, Abbate R: Acute T-cell activation is detectable in unstable angina. Circulation 95:1806–1812, 1997

    CAS  PubMed  Google Scholar 

  6. Liuzzo G, Vallejo AN, Kopecky SL, Frye RL, Holmes DR, Goronzy JJ, Weyand CM: Molecular fingerprint of interferon-gamma signaling in unstable angina. Circulation 103:1509–1514, 2001

    CAS  PubMed  Google Scholar 

  7. Maisel A, Cesario D, Baird S, Rehman J, Haghighi P, Carter S: Experimental autoimmune myocarditis produced by adoptive transfer of splenocytes after myocardial infarction. Circ Res 82:458–463, 1998

    CAS  PubMed  Google Scholar 

  8. Liao YH, Tao R, Cheng X: Autoimmune mechanism in ventricular remodeling after acute myocardial infarction of rats. J HK Coll Cardiol 10:220, 2002

    Google Scholar 

  9. Yasue H, Horio Y, Nakamura N, Fujii H, Imoto N, Sonoda R, Kugiyama K, Obata K, Morikami Y, Kimura T: Induction of coronary artery spasm by acetycholine in patients with variant angina: possible role of the parasympathetic nervous system in the pathogenesis of coronary artery spasm. Circulation 74:955–963, 1986

    CAS  PubMed  Google Scholar 

  10. Caraher EM, Parenteau M, Gruber H, Scott FW: Flow cytometric analysis of intracellular IFN-gamma, IL-4 and IL-10 in CD3(+)4(+) T-cells from rat spleen. J Immunol Methods 244:29–40, 2000

    Google Scholar 

  11. Arbustini E, De Servi S, Brsmucci E, Porcu E, Costante AM, Grasso M, Diegoli M, Fasani R, Morbini P, Angoli L: Comparison of coronary lesion obtained by directional coronary atherctomy in unstable angina, stable angina, and restenosis after either atherectomy or angioplasty. Am J Cardiol 75:675–682, 1995

    Article  CAS  PubMed  Google Scholar 

  12. Soejima H, Irie A, Miyamoto S, Kajiwara I, Kojima S, Hokamaki J, Sakamoto T, Tanaka T, Yoshimura M, Nishimura Y, Ogawa H: Preference toward a T-helper type 1 response in patients with coronary spastic angina. Circulation 107:2196–2120, 2003

    Article  CAS  PubMed  Google Scholar 

  13. Libby P, Hansson GK: Involvement of the immune system in human atherogenesis: Current knowledge and unanswered questions. Lab Invest 64:5–15, 1991

    CAS  PubMed  Google Scholar 

  14. Libby P: Molecular bases of the acute coronary syndromes. Circulation 91:2844–2850, 1995

    CAS  PubMed  Google Scholar 

  15. Liuzzo G, Kopecky SL, Frye RL, O’Fallon WM, Maseri A, Goronzy JJ, Weyand CM: Perturbation of the T-cell repertoire in patients with unstable angina. Circulation 100:2135–2139, 1999

    CAS  PubMed  Google Scholar 

  16. Liuzzo G, Goronzy JJ, Yang H, Kopecky SL, Holmes DR, Frye RL, Weyand CM: Monoclonal T-cell proliferation and plaque instability in acute coronary syndromes. Circulation 101:2883–2888, 2000

    CAS  PubMed  Google Scholar 

  17. Bonecchi R, Bianchi G, Bordignon PP, D’Ambrosio D, Lang R, Borsatti A, Sozzani S, Allavena P, Gray PA, Mantovani A, Sinigaglia F: Differential expression of chemokine receptors and chemotactic responsiveness of type 1 T helper cells (Th1s) and Th2s. J Exp Med 187:129–134, 1998

    Article  CAS  PubMed  Google Scholar 

  18. Sallusto F, Mackay CR, Lanzavecchia A: Selective expression of the eotaxin receptor CCR3 by human T helper 2 cells. Science 277:2005–2007, 1997

    Article  CAS  PubMed  Google Scholar 

  19. Loetscher P, Uguccioni M, Bordoli L, Baggiolini M, Moser B, Chizzolini C, Dayer JM: CCR5 is characteristic of Th1 lymphocytes. Nature 391:344–345, 1998

    Article  CAS  PubMed  Google Scholar 

  20. Sallusto F, Lenig D, Machay CR, Lanzavecchia A: Flexible programs of chemokine receptor expression on human polarized T helper 1 and 2 lymphocytes. J Exp Med 187:875–883, 1998

    Article  CAS  PubMed  Google Scholar 

  21. Williams JG, Jurkovich GJ, Maier RV: Interferon-gamma: A key immunoregulatory lymphokine. J Surg Res 54:79–93, 1993

    Article  CAS  PubMed  Google Scholar 

  22. Pinsky DJ, Cai B, Yang X, Rodriguez C, Sciacca RR, Cannon PJ: The lethal effects of cytokine-induced nitric oxide on cardiac myocytes are blocked by nitric oxide synthase antagonism or transforming growth factor beta. J Clin Invest 95:677–685, 1995

    CAS  PubMed  Google Scholar 

  23. Bick RJ, Wood DE, Poindexter B, McMillin JB, Karoly A, Wang D, Bunting R, McCann T, Law GJ, Buja LM: Cytokines increase neonatal cardiac myocyte calcium concentrations: The involvement of nitric oxide and cyclic nucleotides. J Interferon Cytokine Res 19:645–653, 1999

    Article  CAS  PubMed  Google Scholar 

  24. Sun X, Delbridge LM, Dusting GJ: Cardiodepressant effects of interferon-gamma and endotoxin reversed by inhibition of NO synthase 2 in rat myocardium. J Mol Cell Cardiol 30:989–997, 1998

    Article  CAS  PubMed  Google Scholar 

  25. Keira N, Tatsumi T, Matoba S, Shiraishi J, Yamanaka S, Akashi K, Kobara M, Asayama J, Fushiki S, Fliss H, Nakagawa M: Lethal effect of cytokine-induced nitric oxide and peroxynitrite on cultured rat cardiac myocytes. J Mol Cell Cardiol 34:583–596, 2002

    Article  CAS  PubMed  Google Scholar 

  26. Varda-Bloom N, Leor J, Ohad DG, Hasin Y, Amar M, Fixler R, Battler A, Eldar M, Hasin D: Cytotoxic T-lymphocytes are activated following myocardial infarction and can recognize and kill normal myocytes in vitro. J Mol Cell Cardiol 32:2141–2149, 2000

    Article  CAS  PubMed  Google Scholar 

  27. Kennedy MK, Torrance DS, Picha KS, Mohler KM: Analysis of cytokine mRNA expression in the central nervous system of mice with experimental autoimmune encephalomyelitis reveals that IL-10 mRNA expression correlates with recovery. J Immunol 149:2496–2505, 1992

    CAS  PubMed  Google Scholar 

  28. Hagiwara E, Gourley MF, Lee S, Klinman DK: Disease severity in patients with systemic lupus erythematosus correlates with an increased ratio of interleukin-10-interferon gamma-secreting cells in the peripheral blood. Arthritis Rheum 39:379–385, 1996

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Hua Liao.

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/s10875-014-0062-z.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheng, X., Liao, YH., Ge, H. et al. Th1/Th2 Functional Imbalance After Acute Myocardial Infarction: Coronary Arterial Inflammation or Myocardial Inflammation. J Clin Immunol 25, 246–253 (2005). https://doi.org/10.1007/s10875-005-4088-0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10875-005-4088-0

Key Words

Navigation