Skip to main content

Advertisement

Log in

Novel approach of multi-targeted thiazoles and thiazolidenes toward anti-inflammatory and anticancer therapy—dual inhibition of COX-2 and 5-LOX enzymes

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

It is well established that cyclooxygenase-2 (COX-2) and 5-lipoxygenase (5-LOX) play a vital role in the initiation and progression of inflammatory reactions. Hence, thiazole and thiazolidene-based pharmacophore molecules were synthesized to obtain dual COX-2 and 5-LOX inhibitory activity. The synthesis of target compounds has been achieved by a novel green strategy. In vitro COX-1, COX-2, and 5-LOX evaluation of these molecules have shown the potential for an improved anti-inflammatory profile. Most promising compound among the series (2-(diphenylamino)-4-(4-nitrophenyl)thiazol-5-yl)(naphthalen-1-yl)methanone 7h (IC50 = 0.07 ± 0.02 μM) showed equivalent COX-2 inhibitory potency as that of positive control etoricoxib (IC50 = 0.07 ± 0.01 μM) and an enhanced selectivity index of 115.14. Compound 7h exhibited 5-LOX IC50 of 0.29 ± 0.09 μM and reference drug zileuton showed IC50 of 0.15 ± 0.05 μM. In vivo studies of 7h including carrageenan-induced paw edema assay (63% inhibition of paw edema), antiulcer studies, biochemical assays, qRT-PCR analysis, and anticancer studies indicated that the present study has identified a good lead compound for the development of a potential anti-inflammatory drug having improved gastric safety profile.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Scheme 2
Fig. 3
Scheme 3
Scheme 4
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Haeggström JZ, Rinaldo-Matthis A, Wheelock CE, Wetterholm A. Advances in eicosanoid research, novel therapeutic implications. Biochem Biophys Res Commun. 2010;396:135–139. https://doi.org/10.1016/j.bbrc.2010.03.140.

    Article  PubMed  Google Scholar 

  2. Coussens LM, Werb Z. Inflammation and cancer. Nature. 2002;420:860–867.

    Article  CAS  Google Scholar 

  3. Mantovani A, Allavena P, Sica A, Balkwill F. Cancer-related inflammation. Nature. 2008;54:436. https://doi.org/10.1038/nature07205.

    Article  Google Scholar 

  4. Manju SL, Ethiraj KR, Elias G. Safer anti-inflammatory therapy through dual COX-2/5-LOX inhibitors: a structure-based approach. Eur J Pharm Sci. 2018;121:356–381. https://doi.org/10.1016/j.ejps.2018.06.003.

    Article  PubMed  Google Scholar 

  5. Singh P, Kaur J, Singh G, Bhatti R. Triblock conjugates: identification of a highly potent antiinflammatory agent. J Med Chem. 2015;58:5989–6001. https://doi.org/10.1021/acs.jmedchem.5b00952.

    Article  CAS  PubMed  Google Scholar 

  6. Ding X, Zhu C, Qiang H, Zhou X, Zhou G. Enhancing antitumor effects in pancreatic cancer cells by combined use of COX-2 and 5-LOX inhibitors. Biomed Pharmacother. 2011;65:486–490. https://doi.org/10.1016/j.biopha.2011.06.009.

    Article  CAS  PubMed  Google Scholar 

  7. Chang J, Tang N, Fang Q, Zhu K, Liu L, Xiong X, et al. Inhibition of COX-2 and 5-LOX regulates the progression of colorectal cancer by promoting PTEN and suppressing PI3K/AKT pathway. Biochem Biophys Res Commun. 2019;517:1–7. https://doi.org/10.1016/j.bbrc.2018.01.061.

    Article  CAS  PubMed  Google Scholar 

  8. Harris RE, Beebe-Donk J, Alshafie GA. Cancer chemoprevention by cyclooxygenase 2 (COX-2) blockade. In: Inflammation in the pathogenesis of chronic diseases, Subcellular Biochemistry. vol 42. Springer, Dordrecht. 2007. pp. 193–212. https://doi.org/10.1007/1-4020-5688-5_9.

  9. Omar YM, Abdel-Moty SG, Abdu-Allah HH. Further insight into the dual COX-2 and 15-LOX anti-inflammatory activity of 1, 3, 4-thiadiazole-thiazolidinone hybrids: the contribution of the substituents at 5th positions is size dependent. Bioorg Chem. 2020;97:103657. https://doi.org/10.1016/j.bioorg.2020.103657.

    Article  CAS  PubMed  Google Scholar 

  10. de Souza MVN. Synthesis and biological activity of natural thiazoles: an important class of heterocyclic compounds. J Sulphur Chem. 2005;26:429–449. https://doi.org/10.1080/17415990500322792.

    Article  Google Scholar 

  11. Kouatly O, Geronikaki A, Kamoutsis C, Hadjipavlou-Litina D, Eleftheriou P. Adamantane derivatives of thiazolyl-N-substituted amide, as possible non-steroidal anti-inflammatory agents. Eur J Med Chem. 2009;44:1198–1204. https://doi.org/10.1016/j.ejmech.2008.05.029.

    Article  CAS  PubMed  Google Scholar 

  12. T Chhabria M, Patel S, Modi P, S Brahmkshatriya P. Thiazole: a review on chemistry, synthesis and therapeutic importance of its derivatives. Curr Top Med Chem. 2016;16:2841–2862.

    Article  Google Scholar 

  13. Hsu A, Granneman GR, Bertz RJ. Ritonavir. Clin Pharmacokinet. 1998;35:275–291. https://doi.org/10.2165/00003088-199835040-00002.

    Article  CAS  PubMed  Google Scholar 

  14. Gündüz MG, Tahir MN, Armaković S, Koçak CÖ, Armaković SJ. Design, synthesis and computational analysis of novel acridine-(sulfadiazine/sulfathiazole) hybrids as antibacterial agents. J Mol Struct. 2019;1186:39–49. https://doi.org/10.1016/j.molstruc.2019.03.010.

    Article  Google Scholar 

  15. Borelli C, Schaller M, Niewerth M, Nocker K, Baasner B, Berg D, et al. Modes of action of the new arylguanidine abafungin beyond interference with ergosterol biosynthesis and in vitro activity against medically important fungi. Chemotherapy. 2008;54:245–259. https://doi.org/10.1159/000142334.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Noble S, Balfour J. Meloxicam. Drugs. 1996;51:424–430.

    Article  CAS  Google Scholar 

  17. Hubble JP, Koller WC, Cutler NR, Sramek JJ, Friedman J, Goetz C, et al. Pramipexole in patients with early Parkinson’s disease. Clin Neuropharmacol. 1995;18:338–347. https://doi.org/10.1097/00002826-199508000-00006.

    Article  CAS  PubMed  Google Scholar 

  18. O’Dwyer PJ, Shoemaker DD, Jayaram HN, Johns DG, Cooney DA, Marsoni S, et al. Tiazofurin: a new antitumor agent. Invest New Drugs. 1984;2:79–84. https://doi.org/10.1007/BF00173791.

    Article  PubMed  Google Scholar 

  19. Stubbe J, Kozarich JW. Mechanisms of bleomycin-induced DNA degradation. Chem Rev. 1987;87:1107–1136. https://doi.org/10.1021/cr00081a011.

    Article  CAS  Google Scholar 

  20. Liaras K, Fesatidou M, Geronikaki A. Thiazoles and thiazolidinones as COX/LOX inhibitors. Molecules. 2018;23:685. https://doi.org/10.3390/molecules23030685.

    Article  PubMed Central  Google Scholar 

  21. Woods KW, McCroskey RW, Michaelides MR, Wada CK, Hulkower KI, Bell RL. Thiazole analogues of the NSAID indomethacin as selective COX-2 inhibitors. Bioorg Med Chem Lett. 2001;11:1325–1328. https://doi.org/10.1016/S0960-894X(01)00212-8.

    Article  CAS  PubMed  Google Scholar 

  22. Abdelall EK, Kamel GM. Synthesis of new thiazolo-celecoxib analogues as dual cyclooxygenase-2/15-lipoxygenase inhibitors: determination of regio-specific different pyrazole cyclization by 2D NMR. Eur J Med Chem. 2016;118:250–258. https://doi.org/10.1016/j.ejmech.2016.04.049.

    Article  CAS  PubMed  Google Scholar 

  23. Afifi OS, Shaaban OG, El Razik HAA, El SE-DAS, Ashour FA, El-Tombary AA, Abu-Serie MM. Synthesis and biological evaluation of purine-pyrazole hybrids incorporating thiazole, thiazolidinone or rhodanine moiety as 15-LOX inhibitors endowed with anticancer and antioxidant potential. Bioorg Chem. 2019;87:821–837. https://doi.org/10.1016/j.bioorg.2019.03.076.

    Article  CAS  PubMed  Google Scholar 

  24. Sinha S, Sravanthi T, Yuvaraj S, Manju S, Doble M. 2-Amino-4-aryl thiazole: a promising scaffold identified as a potent 5-LOX inhibitor. RSC Adv. 2016;6:19271–19279. https://doi.org/10.1039/C5RA28187C.

    Article  CAS  Google Scholar 

  25. Sinha S, Doble M, Manju S. Design, synthesis and identification of novel substituted 2-amino thiazole analogues as potential anti-inflammatory agents targeting 5-lipoxygenase. Eur J Med Chem. 2018;158:34–50. https://doi.org/10.1016/j.ejmech.2018.08.098.

    Article  CAS  PubMed  Google Scholar 

  26. Sinha S, Manju S, Doble M. Chalcone-thiazole hybrids: rational design, synthesis and lead identification against 5-lipoxygenase. ACS Med Chem Lett. 2019;10:1415–1422. https://doi.org/10.1021/acsmedchemlett.9b00193.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Jacob PJ, Manju SL. Identification and development of thiazole leads as COX-2/5-LOX inhibitors through in-vitro and in-vivo biological evaluation for anti-inflammatory activity. Bioorg Chem. 2020;100:103882. https://doi.org/10.1016/j.bioorg.2020.103882.

    Article  Google Scholar 

  28. Zhang P, Ye D, Chu Y. An efficient one-pot procedure for the synthesis of 1, 5-benzothiazepinones catalyzed by tetrabutylammonium fluoride (TBAF). Tetrahedron Lett. 2016;57:3743–3745. https://doi.org/10.1016/j.tetlet.2016.07.012.

    Article  CAS  Google Scholar 

  29. Bramley SE, Dupplin V, Goberdhan DG, Meakins GD. The Hantzsch thiazole synthesis under acidic conditions: change of regioselectivity. J Chem Soc [Perkin Trans 1]. 1987;1:639–643. https://doi.org/10.1039/P19870000639.

    Article  Google Scholar 

  30. Brindley JC, Caldwell JM, Meakins GD, Plackett SJ, Price SJ. N′-substituted N-acyl-and N-imidoyl-thioureas: preparation and conversion of N′, N′-disubstituted compounds into 2-(N, N-disubstituted amino) thiazol-5-yl ketones. J Chem Soc [Perkin Trans 1]. 1987;1:1153–1158. https://doi.org/10.1039/P19870001153.

    Article  Google Scholar 

  31. Pan Y, Li H, Zheng S, Zhang B, Deng Z-y. Implication of the significance of dietary compatibility: based on the antioxidant and anti-inflammatory interactions with different ratios of hydrophilic and lipophilic antioxidants among four daily agricultural crops. J Agr Food Chem. 2018;66:7461–7474. https://doi.org/10.1021/acs.jafc.8b01690.

    Article  CAS  Google Scholar 

  32. Singh P, Prasher P, Dhillon P, Bhatti R. Indole based peptidomimetics as anti-inflammatory and anti-hyperalgesic agents: dual inhibition of 5-LOX and COX-2 enzymes. Eur J Med Chem. 2015;97:104–123. https://doi.org/10.1016/j.ejmech.2015.04.044.

    Article  CAS  PubMed  Google Scholar 

  33. Xu G-L, Liu F, Ao G-Z, He S-Y, Ju M, Zhao Y, Xue T. Anti-inflammatory effects and gastrointestinal safety of NNU-hdpa, a novel dual COX/5-LOX inhibitor. Eur J Pharmacol. 2009;611:100–106. https://doi.org/10.1016/j.ejphar.2009.03.062.

    Article  CAS  PubMed  Google Scholar 

  34. Abdelall EK. Synthesis and biological evaluations of novel isoxazoles and furoxan derivative as anti-inflammatory agents. Bioorg Chem. 2020;94:103441. https://doi.org/10.1016/j.bioorg.2019.103441.

    Article  PubMed  Google Scholar 

  35. Abdelrahman MH, Youssif BG, Abdelazeem AH, Ibrahim HM, Abd El Ghany AM, Treamblu L, Bukhari SNA. Synthesis, Biological evaluation, docking study and ulcerogenicity profiling of some novel quinoline-2-carboxamides as dual COXs/LOX inhibitors endowed with anti-inflammatory activity. Eur J Med Chem. 2017;127:972–985. https://doi.org/10.1016/j.ejmech.2016.11.006.

    Article  CAS  PubMed  Google Scholar 

  36. Ganguly A, Bhatnagar O. Effect of bilateral adrenalectomy on production of restraint ulcers in the stomach of albino rats. Can J Physiol Pharm. 1973;51:748–750. https://doi.org/10.1139/y73-113.

    Article  CAS  Google Scholar 

  37. Ganguly A. A method for quantitative assessment of experimentally produced ulcers in the stomach of albino rats. Experientia. 1969;25:1224.

    Article  CAS  Google Scholar 

  38. Sabt A, Eldehna WM, Al-Warhi T, Alotaibi OJ, Elaasser MM, Suliman H, et al. Discovery of 3, 6-disubstituted pyridazines as a novel class of anticancer agents targeting cyclin-dependent kinase 2: synthesis, biological evaluation and in silico insights. J Enzyme Inhib Med Chem. 2020;35:1616–1630. https://doi.org/10.1080/14756366.2020.1806259.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Shrivastava SK, Srivastava P, Bandresh R, Tripathi PN, Tripathi A. Design, synthesis, and biological evaluation of some novel indolizine derivatives as dual cyclooxygenase and lipoxygenase inhibitor for anti-inflammatory activity. Bioorg Med Chem. 2017;25:4424–4432. https://doi.org/10.1016/j.bmc.2017.06.027.

    Article  CAS  PubMed  Google Scholar 

  40. Lee ES, Park BC, Paek SH, Lee YS, Basnet A, Jin DQ, et al. Potent analgesic and anti-inflammatory activities of 1-furan-2-yl-3-pyridin-2-yl-propenone with gastric ulcer sparing effect. Biol Pharm Bull. 2006;29:361–364. https://doi.org/10.1248/bpb.29.361.

    Article  CAS  PubMed  Google Scholar 

  41. Larré S, Tran N, Fan C, Hamadeh H, Champigneulles J, Azzouzi R, et al. PGE2 and LTB4 tissue levels in benign and cancerous prostates. Prostaglandins Other Lipid Mediat. 2008;87:14–19. https://doi.org/10.1016/j.prostaglandins.2008.05.001.

    Article  CAS  PubMed  Google Scholar 

  42. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods. 2001;25:402–408. https://doi.org/10.1006/meth.2001.1262.

    Article  CAS  Google Scholar 

  43. Dhanamjayulu P, Boga RB, Mehta A. Inhibition of aflatoxin B1 biosynthesis and down regulation of aflR and aflB genes in presence of benzimidazole derivatives without impairing the growth of Aspergillus flavus. Toxicon. 2019;170:60–67. https://doi.org/10.1016/j.toxicon.2019.09.018.

    Article  CAS  PubMed  Google Scholar 

  44. Karthikeyan K, Sudhakaran R. Experimental horizontal transmission of Enterocytozoon hepatopenaei in post‐larvae of whiteleg shrimp, Litopenaeus vannamei. J Fish Dis. 2019;42:397–404. https://doi.org/10.1111/jfd.12945.

    Article  CAS  PubMed  Google Scholar 

  45. Sasidharan R, Sreedharannair Leelabaiamma M, Mohanan R, Jose SP, Mathew B, Sukumaran S. Anti-inflammatory effect of synthesized indole-based chalcone (2E)-3-(4-bromophenyl)-1-(1 H-indol-3-yl) prop-2-en-1-one: an in vitro and in vivo studies. Immunopharmacol Immunotoxicol. 2019;2019:1–9. https://doi.org/10.1080/08923973.2019.1672177.

    Article  Google Scholar 

  46. Adjimani JP, Asare P. Antioxidant and free radical scavenging activity of iron chelators. Toxicol Rep. 2015;2:721–728. https://doi.org/10.1016/j.toxrep.2015.04.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Chew Y-L, Goh J-K, Lim Y-Y. Assessment of in vitro antioxidant capacity and polyphenolic composition of selected medicinal herbs from Leguminosae family in Peninsular Malaysia. Food Chem. 2009;116:13–18. https://doi.org/10.1016/j.foodchem.2009.01.091.

    Article  CAS  Google Scholar 

  48. Chai T-T, Wong F-C. Whole-plant profiling of total phenolic and flavonoid contents, antioxidant capacity and nitric oxide scavenging capacity of Turnera subulata. J Med Plant Res. 2012;6:1730–1735. https://doi.org/10.5897/JMPR11.1541.

    Article  CAS  Google Scholar 

  49. Jan MS, Ahmad S, Hussain F, Ahmad A, Mahmood F, Rashid U, et al. Design, synthesis, in-vitro, in-vivo and in-silico studies of pyrrolidine-2, 5-dione derivatives as multitarget anti-inflammatory agents. Eur J Med Chem. 2020;186:111863. https://doi.org/10.1016/j.ejmech.2019.111863.

    Article  CAS  PubMed  Google Scholar 

  50. Wu SY, Zhao XY, Li HP, Yang Y, Roesky HW. Synthesis and Characterization of N, N‐Di‐substituted Acylthiourea Copper (II) Complexes. Z Anorg Allg Chem. 2015;641(5):883–889.https://doi.org/10.1002/zaac.201400605.

    Article  CAS  Google Scholar 

  51. Bai L, Li S, Wang JX, Chen M. Synthesis of benzoyl-N-phenylthioureas under microwave irradiation and phase transfer catalysis conditions. Synth. Commun. 2002;32(1):127–132. https://doi.org/10.1081/SCC-120001519.

    Article  CAS  Google Scholar 

  52. Dzurilla M, Kutschy P, Imrich J, Brtoš S. Hugershoff Reaction of N-1-or N-2-Naphthoyl-N′-monosubstituted and N′, N′-Disubstituted Thiourea Derivatives. Collect. Czech. Chem. Commun. 1994;59(12):2663–2676. https://doi.org/10.1135/cccc19942663.

    Article  CAS  Google Scholar 

  53. Hemdan MM, Fahmy AF, El-Sayed AA. Synthesis and antimicrobial study of 1, 2, 4-triazole, quinazoline and benzothiazole derivatives from 1-naphthoylisothiocyanate. J. Chem. Res. 2010;34(4):219–221. https://doi.org/10.3184/030823410X12707543946812.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors greatly acknowledge VIT, Vellore for providing “VIT Seed Grant” for research. Jaismy Jacob P recognizes CSIR, Govt. of India, for the financial support through Senior Research Fellowship for research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manju S L.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

P, J.J., S L, M. Novel approach of multi-targeted thiazoles and thiazolidenes toward anti-inflammatory and anticancer therapy—dual inhibition of COX-2 and 5-LOX enzymes. Med Chem Res 30, 236–257 (2021). https://doi.org/10.1007/s00044-020-02655-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-020-02655-9

Keywords

Navigation