Skip to main content

Advertisement

Log in

STAT3 transcription factor as target for anti-cancer therapy

  • Review
  • Published:
Pharmacological Reports Aims and scope Submit manuscript

Abstract

STATs constitute a large family of transcription activators and transducers of signals that have an important role in many cell functions as regulation of proliferation and differentiation of the cell also regulation of apoptosis and angiogenesis. STAT3 as a member of that family, recently was discovered to have a vital role in progression of different types of cancers. The activation of STAT3 was observed to regulate multiple gene functions during cancer-like cell proliferation, differentiation, apoptosis, metastasis, inflammation, immunity, cell survival, and angiogenesis. The inhibition of STAT3 activation has been an important target for cancer therapy. Inhibitors of STAT3 have been used for a long time for treatment of many types of cancers like leukemia, melanoma, colon, and renal cancer. In this review article, we summarize and discuss different drugs inhibiting the action of STAT3 and used in treatment of different types of cancer.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Chen Q, Lv J, Yang W, Xu B, Wang Z, Yu Z, et al. Targeted inhibition of STAT3 as a potential treatment strategy for atherosclerosis. Theranostics. 2019;9:6424–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Wong ALA, Hirpara JL, Pervaiz S, Eu J-Q, Sethi G, Goh B-C. Do STAT3 inhibitors have potential in the future for cancer therapy? Expert Opin Investig Drugs. 2017;26:883–7.

    Article  CAS  PubMed  Google Scholar 

  3. Yu H, Lee H, Herrmann A, Buettner R, Jove R. Revisiting STAT3 signalling in cancer: new and unexpected biological functions. Nat Rev Cancer. 2014;14:736–46.

    Article  CAS  PubMed  Google Scholar 

  4. Forbes LR, Milner J, Haddad E. STAT3: a year in review. Curr Opin Hematol. 2016;23:23–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Xiong A, Yang Z, Shen Y, Zhou J, Shen Q. Transcription factor STAT3 as a novel molecular target for cancer prevention. Cancers. 2014;6:926–57.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Akira S, Nishio Y, Inoue M, Wang XJ, Wei S, Matsusaka T, et al. Molecular cloning of APRF, a novel IFN-stimulated gene factor 3 p91-related transcription factor involved in the gp130-mediated signaling pathway. Cell. 1994;77:63–71.

    Article  CAS  PubMed  Google Scholar 

  7. Liang Z, Wu G, Fan C, Xu J, Jiang S, Yan X, et al. The emerging role of signal transducer and activator of transcription 3 in cerebral ischemic and hemorrhagic stroke. Prog Neurobiol. 2016;137:1–16.

    Article  CAS  PubMed  Google Scholar 

  8. Yang Y, Hu W, Di S, Ma Z, Fan C, Wang D, et al. Tackling myocardial ischemic injury: the signal transducer and activator of transcription 3 (STAT3) at a good site. Expert Opin Ther Targets. 2017;21:215–28.

    Article  PubMed  CAS  Google Scholar 

  9. Hu W, Lv J, Han M, Yang Z, Li T, Jiang S, et al. STAT3: the art of multi-tasking of metabolic and immune functions in obesity. Prog Lipid Res. 2018;70:17–28.

    Article  CAS  PubMed  Google Scholar 

  10. Knight RA, Scarabelli TM, Stephanou A. STAT transcription in the ischemic heart. JAK-STAT. 2012;1:111–7.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Mohan CD, Bharathkumar H, Bulusu KC, Pandey V, Rangappa S, Fuchs JE, et al. Development of a novel azaspirane that targets the Janus kinase-signal transducer and activator of transcription (STAT) pathway in hepatocellular carcinoma in vitro and in vivo. J Biol Chem. 2014;289:34296–307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Santoni M, Massari F, Del Re M, Ciccarese C, Piva F, Principato G, et al. Investigational therapies targeting signal transducer and activator of transcription 3 for the treatment of cancer. Expert Opin Investig Drugs. 2015;24:809–24.

    Article  CAS  PubMed  Google Scholar 

  13. Levy DE, Kessler DS, Pine R, Reich N, Darnell JE. Interferon-induced nuclear factors that bind a shared promoter element correlate with positive and negative transcriptional control. Genes Dev. 1988;2:383–93.

    Article  CAS  PubMed  Google Scholar 

  14. Schindler C, Shuai K, Prezioso V, Darnell J. Interferon-dependent tyrosine phosphorylation of a latent cytoplasmic transcription factor. Science. 1992;257:809–13.

    Article  CAS  PubMed  Google Scholar 

  15. Seif F, Khoshmirsafa M, Aazami H, Mohsenzadegan M, Sedighi G, Bahar M. The role of JAK-STAT signaling pathway and its regulators in the fate of T helper cells. Cell Commun Signal. 2017;15:23.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Ghoreschi K, Laurence A, O’Shea JJ. Janus kinases in immune cell signaling. Immunol Rev. 2009;228:273–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Harrison DA. The JAK/STAT pathway. Cold Spring Harb Perspect Biol. 2012;4:a011205.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Yuan Z-L, Guan Y-J, Wang L, Wei W, Kane AB, Chin YE. Central role of the threonine residue within the p+1 loop of receptor tyrosine kinase in STAT3 constitutive phosphorylation in metastatic cancer cells. Mol Cell Biol. 2004;24:9390–400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Silva CM. Role of STATs as downstream signal transducers in Src family kinase-mediated tumorigenesis. Oncogene. 2004;23:8017–23.

    Article  CAS  PubMed  Google Scholar 

  20. Rane SG, Reddy EP. Janus kinases: components of multiple signaling pathways. Oncogene. 2000;19:5662–799.

    Article  CAS  PubMed  Google Scholar 

  21. Yu H, Jove R. The STATs of cancer–new molecular targets come of age. Nat Rev Cancer. 2004;4:97–105.

    Article  CAS  PubMed  Google Scholar 

  22. Darnell JE. Transcription factors as targets for cancer therapy. Nat Rev Cancer. 2002;2:740–9.

    Article  CAS  PubMed  Google Scholar 

  23. Zhu X, Wen Z, Xu LZ, Darnell JE. Stat1 serine phosphorylation occurs independently of tyrosine phosphorylation and requires an activated Jak2 kinase. Mol Cell Biol. 1997;17:6618–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wen Z, Darnell JE. Mapping of Stat3 serine phosphorylation to a single residue (727) and evidence that serine phosphorylation has no influence on DNA binding of Stat1 and Stat3. Nucleic Acids Res. 1997;25:2062–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hazan-Halevy I, Harris D, Liu Z, Liu J, Li P, Chen X, et al. STAT3 is constitutively phosphorylated on serine 727 residues, binds DNA, and activates transcription in CLL cells. Blood. 2010;115:2852–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Decker T, Kovarik P. Serine phosphorylation of STATs. Oncogene. 2000;19:2628–37.

    Article  CAS  PubMed  Google Scholar 

  27. Chung CD, Liao J, Liu B, Rao X, Jay P, Berta P, et al. Specific inhibition of Stat3 signal transduction by PIAS3. Science. 1997;278:1803–5.

    Article  CAS  PubMed  Google Scholar 

  28. Campbell GS, Meyer DJ, Raz R, Levy DE, Schwartz J, Carter-Su C. Activation of acute phase response factor (APRF)/Stat3 transcription factor by growth hormone. J Biol Chem. 1995;270:3974–9.

    Article  CAS  PubMed  Google Scholar 

  29. Wang K, Wang C, Xiao F, Wang H, Wu Z. JAK2/STAT2/STAT3 are required for myogenic differentiation. J Biol Chem. 2008;283:34029–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Johnson DE, O’Keefe RA, Grandis JR. Targeting the IL-6/JAK/STAT3 signalling axis in cancer. Nat Rev Clin Oncol. 2018;15:234–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. You W, Tang Q, Zhang C, Wu J, Gu C, Wu Z, et al. IL-26 promotes the proliferation and survival of human gastric cancer cells by regulating the balance of STAT1 and STAT3 activation. PLoS ONE. 2013;8:e63588.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Lin L, Liu A, Peng Z, Lin H-J, Li P-K, Li C, et al. STAT3 is necessary for proliferation and survival in colon cancer-initiating cells. Cancer Res. 2011;71:7226–377.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Xin H, Zhang C, Herrmann A, Du Y, Figlin R, Yu H. Sunitinib inhibition of Stat3 induces renal cell carcinoma tumor cell apoptosis and reduces immunosuppressive cells. Cancer Res. 2009;69:2506–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhang Y, Du X-L, Wang C-J, Lin D-C, Ruan X, Feng Y-B, et al. Reciprocal activation between PLK1 and Stat3 contributes to survival and proliferation of esophageal cancer cells. Gastroenterology. 2012;142(521–530):e3.

    Google Scholar 

  35. Chen R-J, Ho Y-S, Guo H-R, Wang Y-J. Rapid activation of Stat3 and ERK1/2 by nicotine modulates cell proliferation in human bladder cancer cells. Toxicol Sci. 2008;104:283–93.

    Article  CAS  PubMed  Google Scholar 

  36. Liu Y, Lv L, Xiao W, Gong C, Yin J, Wang D, et al. Leptin activates STAT3 and ERK1/2 pathways and induces endometrial cancer cell proliferation. J Huazhong Univ Sci Technolog Med Sci. 2011;31:365.

    Article  CAS  PubMed  Google Scholar 

  37. Lin W, Zheng L, Zhuang Q, Zhao J, Cao Z, Zeng J, et al. Spica prunellae promotes cancer cell apoptosis, inhibits cell proliferation and tumor angiogenesis in a mouse model of colorectal cancer via suppression of stat3 pathway. BMC Complement Altern Med. 2013;13:144.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Chen H, Yang Z, Ding C, Chu L, Zhang Y, Terry K, et al. Fragment-based drug design and identification of HJC0123, a novel orally bioavailable STAT3 inhibitor for cancer therapy. Eur J Med Chem. 2013;62:498–507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Pancotti F, Roncuzzi L, Maggiolini M, Gasperi-Campani A. Caveolin-1 silencing arrests the proliferation of metastatic lung cancer cells through the inhibition of STAT3 signaling. Cell Signal. 2012;24:1390–7.

    Article  CAS  PubMed  Google Scholar 

  40. Kanai M, Konda Y, Nakajima T, Izumi Y, Kanda N, Nanakin A, et al. Differentiation-inducing factor-1 (DIF-1) inhibits STAT3 activity involved in gastric cancer cell proliferation via MEK-ERK-dependent pathway. Oncogene. 2003;22:548–54.

    Article  CAS  PubMed  Google Scholar 

  41. Alvarez JV, Greulich H, Sellers WR, Meyerson M, Frank DA. Signal transducer and activator of transcription 3 is required for the oncogenic effects of non–small-cell lung cancer-associated mutations of the epidermal growth factor receptor. Cancer Res. 2006;66:3162–8.

    Article  CAS  PubMed  Google Scholar 

  42. Becker TM, Boyd SC, Mijatov B, Gowrishankar K, Snoyman S, Pupo GM, et al. Mutant B-RAF-Mcl-1 survival signaling depends on the STAT3 transcription factor. Oncogene. 2014;33:1158–66.

    Article  CAS  PubMed  Google Scholar 

  43. Furtek SL, Backos DS, Matheson CJ, Reigan P. Strategies and approaches of targeting STAT3 for cancer treatment. ACS Chem Biol. 2016;11:308–18.

    Article  CAS  PubMed  Google Scholar 

  44. Egloff AM, Grandis JR. Improving response rates to EGFR-targeted therapies for head and neck squamous cell carcinoma: candidate predictive biomarkers and combination treatment with Src inhibitors. J Oncol. 2009;2009:896407.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Santos FPS, Kantarjian HM, Jain N, Manshouri T, Thomas DA, Garcia-Manero G, et al. Phase 2 study of CEP-701, an orally available JAK2 inhibitor, in patients with primary or post-polycythemia vera/essential thrombocythemia myelofibrosis. Blood. 2010;115:1131–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Sen B, Saigal B, Parikh N, Gallick G, Johnson FM. Sustained Src inhibition results in signal transducer and activator of transcription 3 (STAT3) activation and cancer cell survival via altered Janus-activated kinase-STAT3 binding. Cancer Res. 2009;69:1958–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Johnston PA, Grandis JR. STAT3 signaling: anticancer strategies and challenges. Mol Interv. 2011;11:18–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Yue P, Turkson J. Targeting STAT3 in cancer: how successful are we? Expert Opin Investig Drugs. 2009;18:45–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Germain D, Frank DA. Targeting the cytoplasmic and nuclear functions of signal transducers and activators of transcription 3 for cancer therapy. Clin Cancer Res. 2007;13:5665–9.

    Article  CAS  PubMed  Google Scholar 

  50. Leeman RJ, Lui VWY, Grandis JR. STAT3 as a therapeutic target in head and neck cancer. Expert Opin Biol Ther. 2006;6:231–41.

    Article  CAS  PubMed  Google Scholar 

  51. Fletcher S, Drewry JA, Shahani VM, Page BDG, Gunning PT. Molecular disruption of oncogenic signal transducer and activator of transcription 3 (STAT3) protein. Biochem Cell Biol. 2009;87:825–33.

    Article  CAS  PubMed  Google Scholar 

  52. Debnath B, Xu S, Neamati N. Small molecule inhibitors of signal transducer and activator of transcription 3 (Stat3) protein. J Med Chem. 2012;55:6645–68.

    Article  CAS  PubMed  Google Scholar 

  53. Arshad S, Naveed M, Ullia M, Javed K, Butt A, Khawar M, et al. Targeting STAT-3 signaling pathway in cancer for development of novel drugs: advancements and challenges. Genet Mol Biol. 2020;43:e20180160.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Manaswiyoungkul P, Erdogan F, Olaoye OO, Cabral AD, de Araujo ED, Gunning PT. Optimization of a high-throughput fluorescence polarization assay for STAT5B DNA binding domain-targeting inhibitors. J Pharm Biomed Anal. 2020;184:113182.

    Article  CAS  PubMed  Google Scholar 

  55. Jung YY, Lee JH, Nam D, Narula AS, Namjoshi OA, Blough BE, et al. Anti-myeloma effects of icariin are mediated through the attenuation of JAK/STAT3-dependent signaling cascade. Front Pharmacol. 2018;9:531.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Verdura S, Cuyàs E, Llorach-Parés L, Pérez-Sánchez A, Micol V, Nonell-Canals A, et al. Silibinin is a direct inhibitor of STAT3. Food Chem Toxicol. 2018;116:161–72.

    Article  CAS  PubMed  Google Scholar 

  57. Jans DA, Martin AJ, Wagstaff KM. Inhibitors of nuclear transport. Curr Opin Cell Biol. 2019;58:50–60.

    Article  CAS  PubMed  Google Scholar 

  58. Phillips KL, Wright N, McDermott E, Cross NA. TRAIL responses are enhanced by nuclear export inhibition in osteosarcoma. Biochem Biophys Res Commun. 2019;517:383–9.

    Article  CAS  PubMed  Google Scholar 

  59. Wei N, Li J, Fang C, Chang J, Xirou V, Syrigos NK, et al. Targeting colon cancer with the novel STAT3 inhibitor bruceantinol. Oncogene. 2019;38:1676–87.

    Article  CAS  PubMed  Google Scholar 

  60. Qiu H-Y, Fu J-Y, Yang M-K, Han H-W, Wang P-F, Zhang Y-H, et al. Identification of new shikonin derivatives as STAT3 inhibitors. Biochem Pharmacol. 2017;146:74–86.

    Article  CAS  PubMed  Google Scholar 

  61. Liu Y, Wang X, Zeng S, Zhang X, Zhao J, Zhang X, et al. The natural polyphenol curcumin induces apoptosis by suppressing STAT3 signaling in esophageal squamous cell carcinoma. J Exp Clin Cancer Res. 2018;37:303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Fan Y, Xue W, Schachner M, Zhao W. Honokiol eliminates glioma/glioblastoma stem cell-like cells Via JAK-STAT3 signaling and inhibits tumor progression by targeting epidermal growth factor receptor. Cancers. 2019;11:22.

    Article  CAS  Google Scholar 

  63. Li D, Li D, Wang G, Wang G, Jin G, Jin G, et al. Resveratrol suppresses colon cancer growth by targeting the AKT/STAT3 signaling pathway. Int J Mol Med. 2019;43:630–40.

    CAS  PubMed  Google Scholar 

  64. Guo H, Kuang S, Song Q, Liu M, Sun X, Yu Q. Cucurbitacin I inhibits STAT3, but enhances STAT1 signaling in human cancer cells in vitro through disrupting actin filaments. Acta Pharmacol Sin. 2018;39:425–37.

    Article  CAS  PubMed  Google Scholar 

  65. Laxmivandana R, Bhukya PL, Madhavi M. STAT3 in pancreatic cancer metastasis. In: Nagaraju G, Bramhachari P, editors. Role of transcription factors in gastrointestinal malignancies. Singapore: Springer; 2017. p. 351–361.

    Chapter  Google Scholar 

  66. Khan MW, Saadalla A, Ewida AH, Al-Katranji K, Al-Saoudi G, Giaccone ZT, et al. The STAT3 inhibitor pyrimethamine displays anti-cancer and immune stimulatory effects in murine models of breast cancer. Cancer Immunol Immunother. 2018;67:13–23.

    Article  CAS  PubMed  Google Scholar 

  67. Legorreta-Herrera M, Retana-Ugalde R, Ventura-Gallegos JL, Narváez V. Pyrimethamine induces oxidative stress in Plasmodium yoelii 17XL-infected mice: a novel immunomodulatory mechanism of action for an old antimalarial drug? Exp Parasitol. 2010;126:381–8.

    Article  CAS  PubMed  Google Scholar 

  68. Lv Z, Yan X, Lu L, Su C, He Y. Atovaquone enhances doxorubicin’s efficacy via inhibiting mitochondrial respiration and STAT3 in aggressive thyroid cancer. J Bioenerg Biomembr. 2018;50:263–70.

    Article  CAS  PubMed  Google Scholar 

  69. Zhou J, Duan L, Chen H, Ren X, Zhang Z, Zhou F, et al. Atovaquone derivatives as potent cytotoxic and apoptosis inducing agents. Bioorg Med Chem Lett. 2009;19:5091–4.

    Article  CAS  PubMed  Google Scholar 

  70. Saiselet M, Floor S, Tarabichi M, Dom G, Hébrant A, van Staveren WCG, et al. Thyroid cancer cell lines: an overview. Front Endocrinol. 2012;3:133.

    Article  CAS  Google Scholar 

  71. Nelson EA, Walker SR, Xiang M, Weisberg E, Bar-Natan M, Barrett R, et al. The STAT5 inhibitor pimozide displays efficacy in models of acute myelogenous leukemia driven by FLT3 mutations. Genes Cancer. 2012;3:503–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Taub RN, Baker MA. Treatment of metastatic malignant melanoma with pimozide. Lancet Lond Engl. 1979;1:605.

    Article  CAS  Google Scholar 

  73. Chen J-J, Cai N, Chen G-Z, Jia C-C, Qiu D-B, Du C, et al. The neuroleptic drug pimozide inhibits stem-like cell maintenance and tumorigenicity in hepatocellular carcinoma. Oncotarget. 2017;8:17593–609.

    Article  PubMed  Google Scholar 

  74. Strobl JS, Kirkwood KL, Lantz TK, Lewine MA, Peterson VA, Worley JF. Inhibition of human breast cancer cell proliferation in tissue culture by the neuroleptic agents pimozide and thioridazine. Cancer Res. 1990;50:5399–405.

    CAS  PubMed  Google Scholar 

  75. Zhou W, Chen M-K, Yu H-T, Zhong Z-H, Cai N, Chen G-Z, et al. The antipsychotic drug pimozide inhibits cell growth in prostate cancer through suppression of STAT3 activation. Int J Oncol. 2016;48:322–8.

    Article  CAS  PubMed  Google Scholar 

  76. Zhang W, Heinzmann D, Grippo JF. Clinical pharmacokinetics of vemurafenib. Clin Pharmacokinet. 2017;56:1033–43.

    Article  CAS  PubMed  Google Scholar 

  77. Garbe C, Eigentler TK. Vemurafenib. In: Martens U, editor. Small molecules in oncology. Recent results in cancer research. Cham: Springer; 2018. p. 77–89.

    Google Scholar 

  78. Vultur A, Villanueva J, Krepler C, Rajan G, Chen Q, Xiao M, et al. MEK inhibition affects STAT3 signaling and invasion in human melanoma cell lines. Oncogene. 2014;33:1850–61.

    Article  CAS  PubMed  Google Scholar 

  79. Liu F, Cao J, Wu J, Sullivan K, Shen J, Ryu B, et al. Stat3-targeted therapies overcome the acquired resistance to vemurafenib in melanomas. J Invest Dermatol. 2013;133:2041–9.

    Article  CAS  PubMed  Google Scholar 

  80. Wang X, Qu H, Dong Y, Wang G, Zhen Y, Zhang L. Targeting signal-transducer-and-activator-of-transcription 3 sensitizes human cutaneous melanoma cells to BRAF inhibitor. Cancer Biomark. 2018;23:67–77.

    Article  CAS  PubMed  Google Scholar 

  81. Xie L, Zeng Y, Dai Z, He W, Ke H, Lin Q, et al. Chemical and genetic inhibition of STAT3 sensitizes hepatocellular carcinoma cells to sorafenib induced cell death. Int J Biol Sci. 2018;14:577–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Llovet JM, Ricci S, Mazzaferro V, Hilgard P, Gane E, Blanc J-F, et al. Sorafenib in advanced hepatocellular carcinoma. N Engl J Med. 2008;359:378–90.

    Article  CAS  PubMed  Google Scholar 

  83. Wilhelm S, Carter C, Lynch M, Lowinger T, Dumas J, Smith RA, et al. Discovery and development of sorafenib: a multikinase inhibitor for treating cancer. Nat Rev Drug Discov. 2006;5:835–44.

    Article  CAS  PubMed  Google Scholar 

  84. Hung M-H, Tai W-T, Shiau C-W, Chen K-F. Downregulation of signal transducer and activator of transcription 3 by sorafenib: a novel mechanism for hepatocellular carcinoma therapy. World J Gastroenterol. 2014;20:15269–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Tai W-T, Shiau C-W, Chen H-L, Liu C-Y, Lin C-S, Cheng A-L, et al. Mcl-1-dependent activation of Beclin 1 mediates autophagic cell death induced by sorafenib and SC-59 in hepatocellular carcinoma cells. Cell Death Dis. 2013;4:e485.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Su J-C, Tseng P-H, Wu S-H, Hsu C-Y, Tai W-T, Li Y-S, et al. SC-2001 overcomes STAT3-mediated sorafenib resistance through RFX-1/SHP-1 activation in hepatocellular carcinoma. Neoplasia. 2014;16:595–605.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Beebe JD, Liu J-Y, Zhang J-T. Two decades of research in discovery of anticancer drugs targeting STAT3, how close are we? Pharmacol Ther. 2018;191:74–91.

    Article  CAS  PubMed  Google Scholar 

  88. Ilamathi M, Santhosh S, Sivaramakrishnan V. Artesunate as an anti-cancer agent targets Stat-3 and favorably suppresses hepatocellular carcinoma. Curr Top Med Chem. 2016;16:2453–63.

    Article  CAS  PubMed  Google Scholar 

  89. Kim C, Lee JH, Kim S-H, Sethi G, Ahn KS. Artesunate suppresses tumor growth and induces apoptosis through the modulation of multiple oncogenic cascades in a chronic myeloid leukemia xenograft mouse model. Oncotarget. 2015;6:4020–35.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Nam W, Tak J, Ryu J-K, Jung M, Yook J-I, Kim H-J, et al. Effects of artemisinin and its derivatives on growth inhibition and apoptosis of oral cancer cells. Head Neck. 2007;29:335–40.

    Article  PubMed  Google Scholar 

  91. Hamacher-Brady A, Stein HA, Turschner S, Toegel I, Mora R, Jennewein N, et al. Artesunate activates mitochondrial apoptosis in breast cancer cells via iron-catalyzed lysosomal reactive oxygen species production. J Biol Chem. 2011;286:6587–601.

    Article  CAS  PubMed  Google Scholar 

  92. Thanaketpaisarn O, Waiwut P, Sakurai H, Saiki I. Artesunate enhances TRAIL-induced apoptosis in human cervical carcinoma cells through inhibition of the NF-κB and PI3K/Akt signaling pathways. Int J Oncol. 2011;39:279–85.

    CAS  PubMed  Google Scholar 

  93. Nelson EA, Walker SR, Kepich A, Gashin LB, Hideshima T, Ikeda H, et al. Nifuroxazide inhibits survival of multiple myeloma cells by directly inhibiting STAT3. Blood. 2008;112:5095–102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Ye T-H, Yang F-F, Zhu Y-X, Li Y-L, Lei Q, Song X-J, et al. Inhibition of Stat3 signaling pathway by nifuroxazide improves antitumor immunity and impairs colorectal carcinoma metastasis. Cell Death Dis. 2018;8:e2534–e25342534.

    Article  CAS  Google Scholar 

  95. Yang F, Hu M, Lei Q, Xia Y, Zhu Y, Song X, et al. Nifuroxazide induces apoptosis and impairs pulmonary metastasis in breast cancer model. Cell Death Dis. 2015;6:e1701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Uong A, Zon LI. Melanocytes in development and cancer. J Cell Physiol. 2010;222:38–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Liu J, Qu X, Shao L, Hu Y, Yu X, Lan P, et al. Pim-3 enhances melanoma cell migration and invasion by promoting STAT3 phosphorylation. Cancer Biol Ther. 2018;19:160–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Messina JL, Yu H, Riker AI, Munster PN, Jove RL, Daud AI. Activated Stat-3 in melanoma. Cancer Control. 2008;15:196.

    Article  PubMed  Google Scholar 

  99. Kulesza DW, Przanowski P, Kaminska B. Knockdown of STAT3 targets a subpopulation of invasive melanoma stem-like cells. Cell Biol Int. 2019;43:613–22.

    Article  CAS  PubMed  Google Scholar 

  100. Niu G, Bowman T, Huang M, Shivers S, Reintgen D, Daud A, et al. Roles of activated Src and Stat3 signaling in melanoma tumor cell growth. Oncogene. 2002;21:7001–100.

    Article  CAS  PubMed  Google Scholar 

  101. Alcolea V, Karelia DN, Pandey MK, Plano D, Singh P, Palop JA, et al. Identification of a novel quinoxaline-isoselenourea targeting the STAT3 pathway as a potential melanoma therapeutic. Int J Mol Sci. 2019;20:521.

    Article  CAS  PubMed Central  Google Scholar 

  102. Sau S, Mondal SK, Kashaw SK, Iyer AK, Banerjee R. Combination of cationic dexamethasone derivative and STAT3 inhibitor (WP1066) for aggressive melanoma: a strategy for repurposing a phase I clinical trial drug. Mol Cell Biochem. 2017;436:119–36.

    Article  CAS  PubMed  Google Scholar 

  103. Kaoud TS, Mohassab AM, Hassan HA, Yan C, Van Ravenstein SX, Abdelhamid D, et al. NO-releasing STAT3 inhibitors suppress BRAF-mutant melanoma growth. Eur J Med Chem. 2020;186:111885.

    Article  CAS  PubMed  Google Scholar 

  104. Lin L, Hutzen B, Zuo M, Ball S, Deangelis S, Foust E, et al. Novel STAT3 phosphorylation inhibitors exhibit potent growth-suppressive activity in pancreatic and breast cancer cells. Cancer Res. 2010;70:2445–544.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Bill MA, Fuchs JR, Li C, Yui J, Bakan C, Benson DM, et al. The small molecule curcumin analog FLLL32 induces apoptosis in melanoma cells via STAT3 inhibition and retains the cellular response to cytokines with anti-tumor activity. Mol Cancer. 2010;9:1–12.

    Article  CAS  Google Scholar 

  106. Bill MA, Bakan C, Benson DM, Fuchs J, Young G, Lesinski GB. Curcumin induces proapoptotic effects against human melanoma cells and modulates the cellular response to immunotherapeutic cytokines. Mol Cancer Ther. 2009;8:2726–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Lesinski GB, Trefry J, Brasdovich M, Kondadasula SV, Sackey K, Zimmerer JM, et al. Melanoma cells exhibit variable signal transducer and activator of transcription 1 phosphorylation and a reduced response to IFN-alpha compared with immune effector cells. Clin Cancer Res. 2007;13:5010–9.

    Article  CAS  PubMed  Google Scholar 

  108. Tartour E, Dorval T, Mosseri V, Deneux L, Mathiot C, Brailly H, et al. Serum interleukin 6 and C-reactive protein levels correlate with resistance to IL-2 therapy and poor survival in melanoma patients. Br J Cancer. 1994;69:911–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Ma D-L, Chan DS-H, Wei G, Zhong H-J, Yang H, Leung LT, et al. Virtual screening and optimization of Type II inhibitors of JAK2 from a natural product library. Chem Commun. 2014;50:13885–8.

    Article  CAS  Google Scholar 

  110. Wu K-J, Huang J-M, Zhong H-J, Dong Z-Z, Vellaisamy K, Lu J-J, et al. A natural product-like JAK2/STAT3 inhibitor induces apoptosis of malignant melanoma cells. PLoS ONE. 2017;12:e0177123.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Wei Y, Xu L, Liang Y, Xu X, Zhao X. Berbamine exhibits potent antitumor effects on imatinib-resistant CML cells in vitro and in vivo. Acta Pharmacol Sin. 2009;30:451–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Nam S, Xie J, Perkins A, Ma Y, Yang F, Wu J, et al. Novel synthetic derivatives of the natural product berbamine inhibit Jak2/Stat3 signaling and induce apoptosis of human melanoma cells. Mol Oncol. 2012;6:484–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Papaemmanuil E, Gerstung M, Bullinger L, Gaidzik VI, Paschka P, Roberts ND, et al. Genomic classification and prognosis in acute myeloid leukemia. N Engl J Med. 2016;374:2209–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Kanna R, Choudhary G, Ramachandra N, Steidl U, Verma A, Shastri A. STAT3 inhibition as a therapeutic strategy for leukemia. Leuk Lymphoma. 2018;59:2068–74.

    Article  CAS  PubMed  Google Scholar 

  115. Pokharel M. Leukemia: a review article. IJARPB. 2012;1:397–408.

    Google Scholar 

  116. Döhner H, Weisdorf DJ, Bloomfield CD. Acute myeloid leukemia. N Engl J Med. 2015;373:1136–52.

    Article  PubMed  CAS  Google Scholar 

  117. Fagard R, Metelev V, Souissi I, Baran-Marszak F. STAT3 inhibitors for cancer therapy: have all roads been explored? JAK-STAT. 2013;2:e22882.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Al Zaid Siddiquee K, Turkson J. STAT3 as a target for inducing apoptosis in solid and hematological tumors. Cell Res. 2008;18:254–67.

    Article  CAS  PubMed  Google Scholar 

  119. Scuto A, Krejci P, Popplewell L, Wu J, Wang Y, Kujawski M, et al. The novel JAK inhibitor AZD1480 blocks STAT3 and FGFR3 signaling, resulting in suppression of human myeloma cell growth and survival. Leukemia. 2011;25:538–50.

    Article  CAS  PubMed  Google Scholar 

  120. Alas S, Bonavida B. Inhibition of constitutive STAT3 activity sensitizes resistant non-Hodgkin’s lymphoma and multiple myeloma to chemotherapeutic drug-mediated apoptosis. Clin Cancer Res. 2003;9:316–26.

    CAS  PubMed  Google Scholar 

  121. Suryani S, Bracken LS, Harvey RC, Sia KCS, Carol H, Chen I-M, et al. Evaluation of the in vitro and in vivo efficacy of the JAK inhibitor AZD1480 against JAK-mutated acute lymphoblastic leukemia. Mol Cancer Ther. 2015;14:364–74.

    Article  CAS  PubMed  Google Scholar 

  122. A Phase I Study of AZD1480 in patients with advanced solid malignancies and advanced hepatocellular carcinoma in the escalation phase, Non-Small Cell Lung Cancer(NSCLC) and non-smokers with lung metastasis and gastric cancer and solid tumour in the expansion phase. ClinicalTrials.gov identifier NCT01219543. 2013.

  123. Jonker DJ, Nott L, Yoshino T, Gill S, Shapiro J, Ohtsu A, et al. Napabucasin versus placebo in refractory advanced colorectal cancer: a randomised phase 3 trial. Lancet Gastroenterol Hepatol. 2018;3:263–70.

    Article  PubMed  Google Scholar 

  124. Hubbard JM, Grothey A. Napabucasin: an update on the first-in-class cancer stemness inhibitor. Drugs. 2017;77:1091–103.

    Article  CAS  PubMed  Google Scholar 

  125. Bendell JC, Hubbard JM, O’Neil BH, Jonker DJ, Starodub A, Peyton JD, et al. Phase 1b/II study of cancer stemness inhibitor napabucasin (BBI-608) in combination with FOLFIRI +/- bevacizumab (bev) in metastatic colorectal cancer (mCRC) patients (pts). J Clin Oncol. 2017;35:3529–3529.

    Article  Google Scholar 

  126. Jung KH, Yoo W, Stevenson HL, Deshpande D, Shen H, Gagea M, et al. Multifunctional effects of a small-molecule STAT3 inhibitor on NASH and hepatocellular carcinoma in mice. Clin Cancer Res. 2017;23:5537–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Lewis KM, Bharadwaj U, Eckols TK, Kolosov M, Kasembeli MM, Fridley C, et al. Small-molecule targeting of signal transducer and activator of transcription (STAT) 3 to treat non-small cell lung cancer. Lung Cancer. 2015;90:182–90.

    Article  PubMed  Google Scholar 

  128. Bharadwaj U, Eckols TK, Xu X, Kasembeli MM, Chen Y, Adachi M, et al. Small-molecule inhibition of STAT3 in radioresistant head and neck squamous cell carcinoma. Oncotarget. 2016;7:26307–30.

    Article  PubMed  PubMed Central  Google Scholar 

  129. Eiring AM, Page BDG, Kraft IL, Mason CC, Vellore NA, Resetca D, et al. Combined STAT3 and BCR-ABL1 inhibition induces synthetic lethality in therapy-resistant chronic myeloid leukemia. Leukemia. 2015;29:586–97.

    Article  CAS  PubMed  Google Scholar 

  130. Chong PSY, Chng W-J, de Mel S. STAT3: a promising therapeutic target in multiple myeloma. Cancers. 2019;11:731.

    Article  CAS  PubMed Central  Google Scholar 

  131. Palumbo A, Anderson K. Multiple myeloma. N Engl J Med. 2011;364:1046–60.

    Article  CAS  PubMed  Google Scholar 

  132. Rajkumar SV, Dimopoulos MA, Palumbo A, Blade J, Merlini G, Mateos M-V, et al. International Myeloma Working Group updated criteria for the diagnosis of multiple myeloma. Lancet Oncol. 2014;15:e538–e548548.

    Article  PubMed  Google Scholar 

  133. Wang Y, Wu L, Cai H, Lei H, Ma C-M, Yang L, et al. YL064 directly inhibits STAT3 activity to induce apoptosis of multiple myeloma cells. Cell Death Discov. 2018;4:1–10.

    Google Scholar 

  134. Zhang X-D, Baladandayuthapani V, Lin H, Mulligan G, Li B, Esseltine D-LW, et al. Tight junction protein 1 modulates proteasome capacity and proteasome inhibitor sensitivity in multiple myeloma via EGFR/JAK1/STAT3 signaling. Cancer Cell. 2016;29:639–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Pallandre J-R, Borg C, Rognan D, Boibessot T, Luzet V, Yesylevskyy S, et al. Novel aminotetrazole derivatives as selective STAT3 non-peptide inhibitors. Eur J Med Chem. 2015;103:163–74.

    Article  CAS  PubMed  Google Scholar 

  136. Jin J, Guo Q, Xie J, Jin D, Zhu Y. Combination of MEK inhibitor and the JAK2-STAT3 pathway inhibition for the therapy of colon cancer. Pathol Oncol Res. 2019;25:769–75.

    Article  CAS  PubMed  Google Scholar 

  137. Zhao C, Wang W, Yu W, Jou D, Wang Y, Ma H, et al. A novel small molecule STAT3 inhibitor, LY5, inhibits cell viability, colony formation, and migration of colon and liver cancer cells. Oncotarget. 2016;7:12917–26.

    Article  PubMed  PubMed Central  Google Scholar 

  138. Wang H, Liu Z, Guan L, Li J, Chen S, Yu W, et al. LYW-6, a novel cryptotanshinone derived STAT3 targeting inhibitor, suppresses colorectal cancer growth and metastasis. Pharmacol Res. 2020;153:104661.

    Article  CAS  PubMed  Google Scholar 

  139. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2018. CA Cancer J Clin. 2018;68:7–30.

    Article  PubMed  Google Scholar 

  140. Santoni M, Conti A, Piva F, Massari F, Ciccarese C, Burattini L, et al. Role of STAT3 pathway in genitourinary tumors. Future Sci OA. 2015;1:FSO15.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  141. Yu T-Y, Pang J-HS, Wu KP-H, Lin L-P, Tseng W-C, Tsai W-C. Platelet-rich plasma increases proliferation of tendon cells by modulating Stat3 and p27 to up-regulate expression of cyclins and cyclin-dependent kinases. Cell Prolif. 2015;48:413–20.

    Article  CAS  PubMed  Google Scholar 

  142. Siddiquee K, Zhang S, Guida WC, Blaskovich MA, Greedy B, Lawrence HR, et al. Selective chemical probe inhibitor of Stat3, identified through structure-based virtual screening, induces antitumor activity. Proc Natl Acad Sci. 2007;104:7391–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Pang M, Ma L, Gong R, Tolbert E, Mao H, Ponnusamy M, et al. A novel STAT3 inhibitor, S3I–201, attenuates renal interstitial fibroblast activation and interstitial fibrosis in obstructive nephropathy. Kidney Int. 2010;78:257–68.

    Article  CAS  PubMed  Google Scholar 

  144. Hosui A, Kimura A, Yamaji D, Zhu B, Na R, Hennighausen L. Loss of STAT5 causes liver fibrosis and cancer development through increased TGF-β and STAT3 activation. J Exp Med. 2009;206:819–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Walters DM, Antao-Menezes A, Ingram JL, Rice AB, Nyska A, Tani Y, et al. Susceptibility of signal transducer and activator of Transcription-1-deficient mice to pulmonary fibrogenesis. Am J Pathol. 2005;167:1221–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Jung JE, Kim HS, Lee CS, Park D-H, Kim Y-N, Lee M-J, et al. Caffeic acid and its synthetic derivative CADPE suppress tumor angiogenesis by blocking STAT3-mediated VEGF expression in human renal carcinoma cells. Carcinogenesis. 2007;28:1780–7.

    Article  CAS  PubMed  Google Scholar 

  147. Horiguchi A, Asano T, Kuroda K, Sato A, Asakuma J, Ito K, et al. STAT3 inhibitor WP1066 as a novel therapeutic agent for renal cell carcinoma. Br J Cancer. 2010;102:1592–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Tsujita Y, Horiguchi A, Tasaki S, Isono M, Asano T, Ito K, et al. STAT3 inhibition by WP1066 suppresses the growth and invasiveness of bladder cancer cells. Oncol Rep. 2017;38:2197–204.

    Article  CAS  PubMed  Google Scholar 

  149. Waks AG, Winer EP. Breast cancer treatment: a review. JAMA. 2019;321:288–300.

    Article  CAS  PubMed  Google Scholar 

  150. Cheng Y, Holloway MP, Nguyen K, McCauley D, Landesman Y, Kauffman MG, et al. XPO1 (CRM1) inhibition represses STAT3 activation to drive a survivin-dependent oncogenic switch in triple-negative breast cancer. Mol Cancer Ther. 2014;13:675–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Banerjee K, Resat H. Constitutive activation of STAT3 in breast cancer cells: a review. Int J Cancer. 2016;138:2570–8.

    Article  CAS  PubMed  Google Scholar 

  152. Liu C-Y, Su J-C, Ni M-H, Tseng L-M, Chu P-Y, Wang D-S, et al. Obatoclax analog SC-2001 inhibits STAT3 phosphorylation through enhancing SHP-1 expression and induces apoptosis in human breast cancer cells. Breast Cancer Res Treat. 2014;146:71–84.

    Article  CAS  PubMed  Google Scholar 

  153. Zhang W, Yu W, Cai G, Zhu J, Zhang C, Li S, et al. A new synthetic derivative of cryptotanshinone KYZ3 as STAT3 inhibitor for triple-negative breast cancer therapy. Cell Death Dis. 2018;9:1–11.

    Article  CAS  Google Scholar 

  154. Qin J-J, Yan L, Zhang J, Zhang W-D. STAT3 as a potential therapeutic target in triple negative breast cancer: a systematic review. J Exp Clin Cancer Res. 2019;38:1–16.

    Article  Google Scholar 

  155. Cho T-M, Kim JY, Kim Y-J, Sung D, Oh E, Jang S, et al. C-terminal HSP90 inhibitor L80 elicits anti-metastatic effects in triple-negative breast cancer via STAT3 inhibition. Cancer Lett. 2019;447:141–53.

    Article  CAS  PubMed  Google Scholar 

  156. Siddiquee KAZ, Gunning PT, Glenn M, Katt WP, Zhang S, Schroeck C, et al. An oxazole-based small-molecule stat3 inhibitor modulates stat3 stability and processing and induces antitumor cell effects. ACS Chem Biol. 2007;2:787–98.

    Article  CAS  PubMed  Google Scholar 

  157. Garcia R, Bowman TL, Niu G, Yu H, Minton S, Muro-Cacho CA, et al. Constitutive activation of Stat3 by the Src and JAK tyrosine kinases participates in growth regulation of human breast carcinoma cells. Oncogene. 2001;20:2499–513.

    Article  CAS  PubMed  Google Scholar 

  158. Catlett-Falcone R, Landowski TH, Oshiro MM, Turkson J, Levitzki A, Savino R, et al. Constitutive activation of Stat3 signaling confers resistance to apoptosis in human U266 myeloma cells. Immunity. 1999;10:105–15.

    Article  CAS  PubMed  Google Scholar 

  159. Schust J, Sperl B, Hollis A, Mayer TU, Berg T. Stattic: a small-molecule inhibitor of STAT3 activation and dimerization. Chem Biol. 2006;13:1235–42.

    Article  CAS  PubMed  Google Scholar 

  160. Becker S, Groner B, Müller CW. Three-dimensional structure of the Stat3beta homodimer bound to DNA. Nature. 1998;394:145–51.

    Article  CAS  PubMed  Google Scholar 

  161. Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. 2010;31:455–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Kim B-H, Lee H, Song Y, Park J-S, Gadhe CG, Choi J, et al. Development of oxadiazole-based ODZ10117 as a small-molecule inhibitor of STAT3 for targeted cancer therapy. J Clin Med. 2019;8:1847.

    Article  CAS  PubMed Central  Google Scholar 

  163. Liu A, Liu Y, Jin Z, Hu Q, Lin L, Jou D, et al. XZH-5 inhibits STAT3 phosphorylation and enhances the cytotoxicity of chemotherapeutic drugs in human breast and pancreatic cancer cells. PLoS ONE. 2012;7:e46624.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Daka P, Liu A, Karunaratne C, Csatary E, Williams C, Xiao H, et al. Design, synthesis and evaluation of XZH-5 analogues as STAT3 inhibitors. Bioorg Med Chem. 2015;23:1348–55.

    Article  CAS  PubMed  Google Scholar 

  165. Liu Y, Liu A, Xu Z, Yu W, Wang H, Li C, et al. XZH-5 inhibits STAT3 phosphorylation and causes apoptosis in human hepatocellular carcinoma cells. Apoptosis. 2011;16:502–10.

    Article  CAS  PubMed  Google Scholar 

  166. Li X, Ma H, Li L, Chen Y, Sun X, Dong Z, et al. Novel synthetic bisindolylmaleimide alkaloids inhibit STAT3 activation by binding to the SH2 domain and suppress breast xenograft tumor growth. Oncogene. 2018;37:2469–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Muhammad W, Hart GR, Nartowt B, Farrell JJ, Johung K, Liang Y, et al. Pancreatic cancer prediction through an artificial neural network. Front Artif Intell. 2019;2:2.

    Article  PubMed  PubMed Central  Google Scholar 

  168. Scholz A, Heinze S, Detjen KM, Peters M, Welzel M, Hauff P, et al. Activated signal transducer and activator of transcription 3 (STAT3) supports the malignant phenotype of human pancreatic cancer. Gastroenterology. 2003;125:891–905.

    Article  CAS  PubMed  Google Scholar 

  169. Wei D, Le X, Zheng L, Wang L, Frey JA, Gao AC, et al. Stat3 activation regulates the expression of vascular endothelial growth factor and human pancreatic cancer angiogenesis and metastasis. Oncogene. 2003;22:319–29.

    Article  CAS  PubMed  Google Scholar 

  170. Corcoran RB, Contino G, Deshpande V, Tzatsos A, Conrad C, Benes CH, et al. STAT3 plays a critical role in KRAS-induced pancreatic tumorigenesis. Cancer Res. 2011;71:5020–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Arpin CC, Mac S, Jiang Y, Cheng H, Grimard M, Page BDG, et al. Applying small molecule signal transducer and activator of Transcription-3 (STAT3) protein inhibitors as pancreatic cancer therapeutics. Mol Cancer Ther. 2016;15:794–805.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Mast JM, Tse D, Shee K, Kuppusamy ML, Kmiec MM, Kálai T, et al. Diarylidenylpiperidones, H-4073 and HO-3867, Induce G2/M cell-cycle arrest, apoptosis and inhibit STAT3 phosphorylation in human pancreatic cancer cells. Cell Biochem Biophys. 2019;77:109–19.

    Article  CAS  PubMed  Google Scholar 

  173. Rath KS, Naidu SK, Lata P, Bid HK, Rivera BK, McCann GA, et al. HO-3867, a safe STAT3 inhibitor, is selectively cytotoxic to ovarian cancer. Cancer Res. 2014;74:2316–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Bixel K, Saini U, Kumar Bid H, Fowler J, Riley M, Wanner R, et al. Targeting STAT3 by HO3867 induces apoptosis in ovarian clear cell carcinoma: Targeting STAT3 by HO3867 induces apoptosis. Int J Cancer. 2017;141:1856–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Selvendiran K, Ahmed S, Dayton A, Kuppusamy ML, Rivera BK, Kálai T, et al. HO-3867, a curcumin analog, sensitizes cisplatin-resistant ovarian carcinoma, leading to therapeutic synergy through STAT3 inhibition. Cancer Biol Ther. 2011;12:837–45.

    Article  CAS  PubMed  Google Scholar 

  176. Nam S, Wen W, Schroeder A, Herrmann A, Yu H, Cheng X, et al. Dual inhibition of Janus and Src family kinases by novel indirubin derivative blocks constitutively-activated Stat3 signaling associated with apoptosis of human pancreatic cancer cells. Mol Oncol. 2013;7:369–78.

    Article  CAS  PubMed  Google Scholar 

  177. Tsui V, Gibbons P, Ultsch M, Mortara K, Chang C, Blair W, et al. A new regulatory switch in a JAK protein kinase. Proteins. 2011;79:393–401.

    Article  CAS  PubMed  Google Scholar 

  178. Hennequin LF, Allen J, Breed J, Curwen J, Fennell M, Green TP, et al. N-(5-chloro-1,3-benzodioxol-4-yl)-7-[2-(4-methylpiperazin-1-yl)ethoxy]-5-(tetrahydro-2H-pyran-4-yloxy) quinazolin-4-amine, a novel, highly selective, orally available, dual-specific c-Src/Abl kinase inhibitor. J Med Chem. 2006;49:6465–88.

    Article  CAS  PubMed  Google Scholar 

  179. Sun S, Yue P, He M, Zhang X, Paladino D, Abed YA, et al. An integrated computational and experimental binding study identifies the dna binding domain as the putative binding site of novel pyrimidinetrione signal transducer and activator of Transcription 3 (STAT3) inhibitors. Drug Des. 2017;6:142.

    Article  CAS  Google Scholar 

  180. Kohsaka S, Wang L, Yachi K, Mahabir R, Narita T, Itoh T, et al. STAT3 inhibition overcomes temozolomide resistance in glioblastoma by downregulating MGMT expression. Mol Cancer Ther. 2012;11:1289–12299.

    Article  CAS  PubMed  Google Scholar 

  181. Matsuno K, Masuda Y, Uehara Y, Sato H, Muroya A, Takahashi O, et al. Identification of a new series of STAT3 inhibitors by virtual screening. ACS Med Chem Lett. 2010;1:371–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Akiyama Y, Nonomura C, Ashizawa T, Iizuka A, Kondou R, Miyata H, et al. The anti-tumor activity of the STAT3 inhibitor STX-0119 occurs via promotion of tumor-infiltrating lymphocyte accumulation in temozolomide-resistant glioblastoma cell line. Immunol Lett. 2017;190:20–5.

    Article  CAS  PubMed  Google Scholar 

  183. Liu L, Kritsanida M, Magiatis P, Gaboriaud N, Wang Y, Wu J, et al. A novel 7-bromoindirubin with potent anticancer activity suppresses survival of human melanoma cells associated with inhibition of STAT3 and Akt signaling. Cancer Biol Ther. 2012;13:1255–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Liu L, Gaboriaud N, Vougogianopoulou K, Tian Y, Wu J, Wen W, et al. MLS-2384, a new 6-bromoindirubin derivative with dual JAK/Src kinase inhibitory activity, suppresses growth of diverse cancer cells. Cancer Biol Ther. 2014;15:178–84.

    Article  CAS  PubMed  Google Scholar 

  185. Lin L, Hutzen B, Li P-K, Ball S, Zuo M, DeAngelis S, et al. A novel small molecule, LLL12, inhibits STAT3 phosphorylation and activities and exhibits potent growth-suppressive activity in human cancer cells. Neoplasia. 2010;12:39–IN5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Liu A, Liu Y, Li P-K, Li C, Lin J. LLL12 inhibits endogenous and exogenous interleukin-6-induced STAT3 phosphorylation in human pancreatic cancer cells. Anticancer Res. 2011;31:2029–35.

    CAS  PubMed  PubMed Central  Google Scholar 

  187. Zuo M, Li C, Lin J, Javle M. LLL12, a novel small inhibitor targeting STAT3 for hepatocellular carcinoma therapy. Oncotarget. 2015;6:10940–9.

    Article  PubMed  PubMed Central  Google Scholar 

  188. Nie Y, Li Y, Hu S. A novel small inhibitor, LLL12, targets STAT3 in non-small cell lung cancer in vitro and in vivo. Oncol Lett. 2018;16:5349–54.

    PubMed  PubMed Central  Google Scholar 

  189. Page BDG, Fletcher S, Yue P, Li Z, Zhang X, Sharmeen S, et al. Identification of a non-phosphorylated, cell permeable, small molecule ligand for the Stat3 SH2 domain. Bioorg Med Chem Lett. 2011;21:5605–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Zhang X, Yue P, Page BDG, Li T, Zhao W, Namanja AT, et al. Orally bioavailable small-molecule inhibitor of transcription factor Stat3 regresses human breast and lung cancer xenografts. Proc Natl Acad Sci USA. 2012;109:9623–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Resetca D, Haftchenary S, Gunning PT, Wilson DJ. Changes in signal transducer and activator of transcription 3 (STAT3) dynamics induced by complexation with pharmacological inhibitors of Src homology 2 (SH2) domain dimerization. J Biol Chem. 2014;289:32538–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Simone VD, Franzè E, Ronchetti G, Colantoni A, Fantini MC, Fusco DD, et al. Th17-type cytokines, IL-6 and TNF-α synergistically activate STAT3 and NF-kB to promote colorectal cancer cell growth. Oncogene. 2015;34:3493–503.

    Article  PubMed  CAS  Google Scholar 

  193. Jiang X, Tang J, Wu M, Chen S, Xu Z, Wang H, et al. BP-1-102 exerts an antitumor effect on the AGS human gastric cancer cell line through modulating the STAT3 and MAPK signaling pathways. Mol Med Rep. 2019;19:2698–706.

    CAS  PubMed  PubMed Central  Google Scholar 

  194. Escobar Z, Bjartell A, Canesin G, Evans-Axelsson S, Sterner O, Hellsten R, et al. Preclinical characterization of 3β-(N-Acetyl l-cysteine methyl ester)-2aβ,3-dihydrogaliellalactone (GPA512), a prodrug of a direct STAT3 inhibitor for the treatment of prostate cancer. J Med Chem. 2016;59:4551–622.

    Article  CAS  PubMed  Google Scholar 

  195. Huang W, Dong Z, Chen Y, Wang F, Wang CJ, Peng H, et al. Small-molecule inhibitors targeting the DNA-binding domain of STAT3 suppress tumor growth, metastasis and STAT3 target gene expression in vivo. Oncogene. 2016;35:783–92.

    Article  CAS  PubMed  Google Scholar 

  196. Fuh B, Sobo M, Cen L, Josiah D, Hutzen B, Cisek K, et al. LLL-3 inhibits STAT3 activity, suppresses glioblastoma cell growth and prolongs survival in a mouse glioblastoma model. Br J Cancer. 2009;100:106–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Fossey SL, Liao AT, McCleese JK, Bear MD, Lin J, Li P-K, et al. Characterization of STAT3 activation and expression in canine and human osteosarcoma. BMC Cancer. 2009;9:1–15.

    Article  CAS  Google Scholar 

  198. Bhasin D, Etter JP, Chettiar SN, Mok M, Li P-K. Antiproliferative activities and SAR studies of substituted anthraquinones and 1,4-naphthoquinones. Bioorg Med Chem Lett. 2013;23:6864–7.

    Article  CAS  PubMed  Google Scholar 

  199. Yang T, Liu J, Yang M, Huang N, Zhong Y, Zeng T, et al. Cucurbitacin B exerts anti-cancer activities in human multiple myeloma cells in vitro and in vivo by modulating multiple cellular pathways. Oncotarget. 2016;8:5800–13.

    Article  PubMed Central  Google Scholar 

  200. Sun Y, Zhang J, Zhou J, Huang Z, Hu H, Qiao M, et al. Synergistic effect of cucurbitacin B in combination with curcumin via enhancing apoptosis induction and reversing multidrug resistance in human hepatoma cells. Eur J Pharmacol. 2015;768:28–40.

    Article  CAS  PubMed  Google Scholar 

  201. Song J, Liu H, Li Z, Yang C, Wang C. Cucurbitacin I inhibits cell migration and invasion and enhances chemosensitivity in colon cancer. Oncol Rep. 2015;33:1867–71.

    Article  CAS  PubMed  Google Scholar 

  202. Zhu J-S, Ouyang D-Y, Shi Z-J, Xu L-H, Zhang Y-T, He X-H. Cucurbitacin B induces cell cycle arrest, apoptosis and autophagy associated with G actin reduction and persistent activation of cofilin in Jurkat cells. Pharmacology. 2012;89:348–6.

    Article  CAS  PubMed  Google Scholar 

  203. Iwanski GB, Lee DH, En-Gal S, Doan NB, Castor B, Vogt M, et al. Cucurbitacin B, a novel in vivo potentiator of gemcitabine with low toxicity in the treatment of pancreatic cancer. Br J Pharmacol. 2010;160:998–1007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Gupta P, Srivastava SK. Inhibition of Integrin-HER2 signaling by Cucurbitacin B leads to in vitro and in vivo breast tumor growth suppression. Oncotarget. 2014;5:1812–28.

    Article  PubMed  PubMed Central  Google Scholar 

  205. Shukla S, Khan S, Kumar S, Sinha S, Farhan M, Bora HK, et al. Cucurbitacin B alters the expression of tumor-related genes by epigenetic modifications in NSCLC and inhibits NNK-induced lung tumorigenesis. Cancer Prev Res (Phila). 2015;8:552–62.

    Article  CAS  Google Scholar 

  206. Guo J, Wang J, Cai C, Xu J, Yu H, Xu H, et al. The anti-melanoma efficiency of the intratumoral injection of cucurbitacin-loaded sustained release carriers: in situ-forming implants. AAPS Pharm Sci Tech. 2015;16:973–85.

    Article  CAS  Google Scholar 

  207. Liu X, Xiao W, Wang X-D, Li Y-F, Han J, Li Y. The p38-interacting protein (p38IP) regulates G2/M progression by promoting α-tubulin acetylation via inhibiting ubiquitination-induced degradation of the acetyltransferase GCN5. J Biol Chem. 2013;288:36648–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Chan KT, Li K, Liu SL, Chu KH, Toh M, Xie WD. Cucurbitacin B inhibits STAT3 and the Raf/MEK/ERK pathway in leukemia cell line K562. Cancer Lett. 2010;289:46–52.

    Article  CAS  PubMed  Google Scholar 

  209. Shin D-S, Kim H-N, Shin KD, Yoon YJ, Kim S-J, Han DC, et al. Cryptotanshinone inhibits constitutive signal transducer and activator of Transcription 3 function through blocking the dimerization in DU145 prostate cancer cells. Cancer Res. 2009;69:193–202.

    Article  CAS  PubMed  Google Scholar 

  210. Ge Y, Cheng R, Zhou Y, Shen J, Peng L, Xu X, et al. Cryptotanshinone induces cell cycle arrest and apoptosis of multidrug resistant human chronic myeloid leukemia cells by inhibiting the activity of eukaryotic initiation factor 4E. Mol Cell Biochem. 2012;368:17–25.

    Article  CAS  PubMed  Google Scholar 

  211. Chen W, Liu L, Luo Y, Odaka Y, Awate S, Zhou H, et al. Cryptotanshinone activates p38/JNK and inhibits Erk1/2 leading to caspase-independent cell death in tumor cells. Cancer Prev Res (Phila). 2012;5:778–87.

    Article  CAS  Google Scholar 

  212. Roy S, Singh RP, Agarwal C, Siriwardana S, Sclafani RA, Agarwal R. Downregulation of both p21/Cip1 and p27/Kip1 produces a more aggressive prostate cancer phenotype. Cell Cycle. 2008;7:1828–35.

    Article  CAS  PubMed  Google Scholar 

  213. Allegra A, Innao V, Russo S, Gerace D, Alonci A, Musolino C. Anticancer activity of curcumin and its analogues: preclinical and clinical studies. Cancer Invest. 2017;35:1–22.

    Article  CAS  PubMed  Google Scholar 

  214. Duvoix A, Blasius R, Delhalle S, Schnekenburger M, Morceau F, Henry E, et al. Chemopreventive and therapeutic effects of curcumin. Cancer Lett. 2005;223:181–90.

    Article  CAS  PubMed  Google Scholar 

  215. Kunnumakkara AB, Anand P, Aggarwal BB. Curcumin inhibits proliferation, invasion, angiogenesis and metastasis of different cancers through interaction with multiple cell signaling proteins. Cancer Lett. 2008;269:199–225.

    Article  CAS  PubMed  Google Scholar 

  216. Chen L-X, He Y-J, Zhao S-Z, Wu J-G, Wang J-T, Zhu L-M, et al. Inhibition of tumor growth and vasculogenic mimicry by curcumin through down-regulation of the EphA2/PI3K/MMP pathway in a murine choroidal melanoma model. Cancer Biol Ther. 2011;11:229–35.

    Article  CAS  PubMed  Google Scholar 

  217. Chiablaem K, Lirdprapamongkol K, Keeratichamroen S, Surarit R, Svasti J. Curcumin suppresses vasculogenic mimicry capacity of hepatocellular carcinoma cells through STAT3 and PI3K/AKT inhibition. Anticancer Res. 2014;34:1857–64.

    CAS  PubMed  Google Scholar 

  218. Köpcke B, Weber RWS, Anke H. Galiellalactone and its biogenetic precursors as chemotaxonomic markers of the Sarcosomataceae (Ascomycota). Phytochemistry. 2002;60:709–14.

    Article  PubMed  Google Scholar 

  219. Don-Doncow N, Escobar Z, Johansson M, Kjellström S, Garcia V, Munoz E, et al. Galiellalactone is a direct inhibitor of the transcription factor STAT3 in prostate cancer cells. J Biol Chem. 2014;289:15969–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Hellsten R, Johansson M, Dahlman A, Dizeyi N, Sterner O, Bjartell A. Galiellalactone is a novel therapeutic candidate against hormone-refractory prostate cancer expressing activated Stat3. Prostate. 2008;68:269–80.

    Article  CAS  PubMed  Google Scholar 

  221. Canesin G, Evans-Axelsson S, Hellsten R, Sterner O, Krzyzanowska A, Andersson T, et al. The STAT3 inhibitor galiellalactone effectively reduces tumor growth and metastatic spread in an orthotopic xenograft mouse model of prostate cancer. Eur Urol. 2016;69:400–4.

    Article  CAS  PubMed  Google Scholar 

  222. Chi N, Tan Z, Ma K, Bao L, Yun Z. Increased circulating myeloid-derived suppressor cells correlate with cancer stages, interleukin-8 and -6 in prostate cancer. Int J Clin Exp Med. 2014;7:3181–92.

    PubMed  PubMed Central  Google Scholar 

  223. Hellsten R, Lilljebjörn L, Johansson M, Leandersson K, Bjartell A. The STAT3 inhibitor galiellalactone inhibits the generation of MDSC-like monocytes by prostate cancer cells and decreases immunosuppressive and tumorigenic factors. Prostate. 2019;79:1611–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Siveen KS, Sikka S, Surana R, Dai X, Zhang J, Kumar AP, et al. Targeting the STAT3 signaling pathway in cancer: role of synthetic and natural inhibitors. Biochim Biophys Acta. 2014;1845:136–54.

    CAS  PubMed  Google Scholar 

  225. Bai X, Cerimele F, Ushio-Fukai M, Waqas M, Campbell PM, Govindarajan B, et al. Honokiol, a small molecular weight natural product, inhibits angiogenesis in vitro and tumor growth in vivo. J Biol Chem. 2003;278:35501–7.

    Article  CAS  PubMed  Google Scholar 

  226. Chen F, Wang T, Wu Y-F, Gu Y, Xu X-L, Zheng S, et al. Honokiol: a potent chemotherapy candidate for human colorectal carcinoma. World J Gastroenterol. 2004;10:3459–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Shigemura K, Arbiser JL, Sun S-Y, Zayzafoon M, Johnstone PAS, Fujisawa M, et al. Honokiol, a natural plant product, inhibits the bone metastatic growth of human prostate cancer cells. Cancer. 2007;109:1279–89.

    Article  CAS  PubMed  Google Scholar 

  228. Wolf I, O’Kelly J, Wakimoto N, Nguyen A, Amblard F, Karlan BY, et al. Honokiol, a natural biphenyl, inhibits in vitro and in vivo growth of breast cancer through induction of apoptosis and cell cycle arrest. Int J Oncol. 2007;30:1529–37.

    CAS  PubMed  Google Scholar 

  229. Steinmann P, Walters DK, Arlt MJE, Banke IJ, Ziegler U, Langsam B, et al. Antimetastatic activity of honokiol in osteosarcoma. Cancer. 2012;118:2117–27.

    Article  CAS  PubMed  Google Scholar 

  230. Jiang M-C, Chen X-H, Zhao X, Zhang X-J, Chen W-F. Involvement of IGF-1 receptor signaling pathway in the neuroprotective effects of Icaritin against MPP+-induced toxicity in MES23.5 cells. Eur J Pharmacol. 2016;786:53–9.

    Article  CAS  PubMed  Google Scholar 

  231. Huang X, Zhu D, Lou Y. A novel anticancer agent, icaritin, induced cell growth inhibition, G1 arrest and mitochondrial transmembrane potential drop in human prostate carcinoma PC-3 cells. Eur J Pharmacol. 2007;564:26–36.

    Article  CAS  PubMed  Google Scholar 

  232. Guo Y, Zhang X, Meng J, Wang Z-Y. An anticancer agent icaritin induces sustained activation of the extracellular signal-regulated kinase (ERK) pathway and inhibits growth of breast cancer cells. Eur J Pharmacol. 2011;658:114–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Li S, Priceman SJ, Xin H, Zhang W, Deng J, Liu Y, et al. Icaritin inhibits JAK/STAT3 signaling and growth of renal cell carcinoma. PLoS ONE. 2013;8:e81657.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  234. Zheng Q, Liu W, Li B, Chen H, Zhu W, Yang G, et al. Anticancer effect of icaritin on human lung cancer cells through inducing s phase cell cycle arrest and apoptosis. J Huazhong Univ Sci Technolog Med Sci. 2014;34:497–503.

    Article  CAS  PubMed  Google Scholar 

  235. Zhu S, Wang Z, Li Z, Peng H, Luo Y, Deng M, et al. Icaritin suppresses multiple myeloma, by inhibiting IL-6/JAK2/STAT3. Oncotarget. 2015;6:10460–72.

    Article  PubMed  PubMed Central  Google Scholar 

  236. Yang J-G, Lu R, Ye X-J, Zhang J, Tan Y-Q, Zhou G. Icaritin reduces oral squamous cell carcinoma progression via the inhibition of STAT3 signaling. Int J Mol Sci. 2017;18:132.

    Article  PubMed Central  CAS  Google Scholar 

  237. Yang H, Chen D, Cui QC, Yuan X, Dou QP. Celastrol, a triterpene extracted from the Chinese “Thunder of God Vine”, is a potent proteasome inhibitor and suppresses human prostate cancer growth in nude mice. Cancer Res. 2006;66:4758–65.

    Article  CAS  PubMed  Google Scholar 

  238. Abbas S, Bhoumik A, Dahl R, Vasile S, Krajewski S, Cosford NDP, et al. Preclinical studies of celastrol and acetyl isogambogic acid in melanoma. Clin Cancer Res. 2007;13:6769–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Hassane DC, Guzman ML, Corbett C, Li X, Abboud R, Young F, et al. Discovery of agents that eradicate leukemia stem cells using an in silico screen of public gene expression data. Blood. 2008;111:5654–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Rajendran P, Li F, Shanmugam MK, Kannaiyan R, Goh JN, Wong KF, et al. Celastrol suppresses growth and induces apoptosis of human hepatocellular carcinoma through the modulation of STAT3/JAK2 signaling cascade in vitro and in vivo. Cancer Prev Res (Phila). 2012;5:631–43.

    Article  CAS  Google Scholar 

  241. Ahn KS, Sethi G, Sung B, Goel A, Ralhan R, Aggarwal BB. Guggulsterone, a farnesoid X receptor antagonist, inhibits constitutive and inducible STAT3 activation through induction of a protein tyrosine phosphatase SHP-1. Cancer Res. 2008;68:4406–15.

    Article  CAS  PubMed  Google Scholar 

  242. Xu L, Zhang D, Liu X, Yang C, Wang Y, Cao F. Inhibitory effect of celastrol on cell viability of urinary bladder cancer cell line 5637 cells through JAK2/STAT3 signaling pathway. Int J Clin Exp Med. 2017;10:6845–52.

    CAS  Google Scholar 

  243. Boojar MMA, Boojar MMA, Golmohammad S. Overview of Silibinin anti-tumor effects. J Herb Med. 2020;23:100375.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heba A. Hassan.

Ethics declarations

Conflict of interest

The author(s) declare(s) that there is no conflict of interest regarding publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohassab, A.M., Hassan, H.A., Abdelhamid, D. et al. STAT3 transcription factor as target for anti-cancer therapy. Pharmacol. Rep 72, 1101–1124 (2020). https://doi.org/10.1007/s43440-020-00156-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43440-020-00156-5

Keywords

Navigation