Skip to main content

Advertisement

Log in

Structural, microstructural, dielectric, transport, and optical properties of modified bismuth ferrite

  • Original Article
  • Published:
Journal of the Korean Ceramic Society Aims and scope Submit manuscript

Abstract

In this communication, the synthesis (solid-state reaction) and characterization (XRD, SEM, EDX, and IS) of the (1 − x)BiFeO3 − x(BiNaKTiMnO3), (x = 0.05 and 0.1) ceramics were reported. The structural analysis suggests a rhombohedral crystal symmetry (#R3c) with an average crystallite size of 39.6 nm and micro-lattice strain of 0.000401 in x = 0.05 sample, whereas average crystallite size of 46.6 nm and lattice strain of 0.00133 in x = 0.1 sample, respectively. The growth and distribution of the grains and the position of grain boundaries were studied from a scanning electron microscope (SEM). The purity and compositional analysis of the prepared samples were checked from an energy-dispersive X-ray analysis (EDX) image. The study of the Fourier-transform infrared spectroscopy (FTIR) spectrum suggests the presence of a stretching band of the constituent elements in the modified bismuth ferrite. The presence of the Maxwell–Wanger type of dispersion was confirmed by a dielectric study. The investigation of impedance as a function of temperature and frequency reveals the existence of a negative temperature coefficient of resistance (NTCR). A non-Debye kind of relaxation mechanism is revealed by electric modulus analysis; however, a thermally induced relaxation process is confirmed by an ac conductivity study. The semi-circular arcs in the Nyquist and Cole–Cole plots indicate that the sample is semiconducting. BNKTM 5% has an energy bandgap of 2.9 eV, while BNKTM 10% has an energy bandgap of 2.7 eV, according to UV–visible spectra. The field-dependent hysteresis loop is analogous to the onset of ferroelectricity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. J.L. Rosas, J.M. Cervantes, J. Leon-Flores, E. Carvajal, J.A. Arenas, M. Romero, R. Escamilla, DFT study on the electronic and magnetic properties of the Sr2FeNbO6 compound. Mater. Today Commun. 23, 100844–100853 (2020)

    Article  CAS  Google Scholar 

  2. S.M. Borchani, W.C.-R. Koubaa, M. Megdiche, Structural, magnetic, and electrical properties of a new double-perovskite LaNaMnMoO6 material. R. Soc. Open Sci. 4, 170920–170926 (2017)

    Article  Google Scholar 

  3. H. Zheng, Y.L. Dong, X. Wang, W.J. Weng, G.R. Han, N. Ma, P.Y. Du, Angew. Chem., Int. Ed. 48, 8927–8930 (2009)

    Article  CAS  Google Scholar 

  4. M. Gajek, S. Fusil, K. Bouzehouane, J. Fontcuberta, A. Barthelemy, A. Fert et al., Nat. Mater. 6, 296–302 (2007)

    Article  CAS  Google Scholar 

  5. M. Bibes, A. Barthélémy, Nat Mater. 7, 425–426 (2008)

    Article  CAS  Google Scholar 

  6. K.K. Shung, J.M. Cannata, Q.F. Zhou, Piezoelectric materials for high-frequency medical imaging applications: a review. J. Electroceram. 19, 139–145 (2007)

    Article  CAS  Google Scholar 

  7. G.A. Smolenskii, A.I. Agranovskaya, N.N. Krainic, New ferroelectrics of complex composition IV. Sov. Phys. Solid State 2, 2651–2654 (1961)

    Google Scholar 

  8. T. Takenaka, K. Sakata, Dielectric, piezoelectric and pyroelectric properties of (BiNa)1/2TiO3-based ceramics. Ferroelectrics 95, 153–156 (1989)

    Article  CAS  Google Scholar 

  9. S. Said, J.P. Mercurio, Relaxor behavior of low lead and lead-free ferroelectric ceramics of the Na0.5Bi0.5TiO3–PbTiO3 and Na0.5Bi0.5TiO3–K0.5Bi0.5TiO3 systems. J. Eur. Ceram. Soc. 21, 1333–1336 (2001)

    Article  CAS  Google Scholar 

  10. R.K. Parida, B.N. Parida, R.K. Bhuyan, S.K. Parida, Structural, mechanical and electric properties of La doped BNT-BFO perovskite ceramics. Ferroelectrics 571, 162–174 (2021)

    Article  CAS  Google Scholar 

  11. F. Aziz, N. Gupta, G.G. Soni, K.K. Kushwah, Contrasting effects of mismatch strain on the magnetic behavior of undoped and doped BaFeO3-δ thin films. J. Magn. Magn. Mater. 517, 167338 (2021)

    Article  CAS  Google Scholar 

  12. S.K. Parida, P. Kumar Das, R.N.P. Choudhary, Structural and electrical characterization of SrMn0.97Ce0.03O3 ceramics. Integr. Ferroelectr. 221, 215–230 (2021)

    Article  CAS  Google Scholar 

  13. T. Zhao, A. Scholl, F. Zavaliche et al., Electrical control of antiferromagnetic domains in multiferroic BiFeO 3 films at room temperature. Nat. Mater. 5(10), 823–829 (2006)

    Article  CAS  Google Scholar 

  14. Y.H. Chu, L.W. Martin, M.B. Holcomb, Electric-field control of local ferromagnetism using a magnetoelectric multiferroic. Nat. Mater. 7, 478–482 (2008)

    Article  CAS  Google Scholar 

  15. S. Lee, W. Ratcliff, S.W. Cheong, V. Kiryukhin, Electric field control of the magnetic state in BiFeO3 single crystals. Appl. Phys. Lett. 92, 192906–192907 (2008)

    Article  Google Scholar 

  16. G. Catalan, J.F. Scott, Physics and applications of bismuth ferrite. Adv. Mater. 21, 2463–2485 (2009)

    Article  CAS  Google Scholar 

  17. M. Załȩski, Thermally stimulated processes related to photochromism of scandium doped sillenites. J. Appl. Phys. 87, 4279–4284 (2000)

    Article  Google Scholar 

  18. E. Nippolainen, A.A. Kamshilin, V.V. Prokofiev, T. Jaaskelainen, Combined formation of a self-pumped phase-conjugate mirror and spatial subharmonics in photorefractive sillenites. Appl. Phys. Lett. 78, 859–861 (2001)

    Article  CAS  Google Scholar 

  19. P.H. Borse, U.A. Joshi, S.M. Ji, J.S. Jang, J.S. Lee, E.D. Jeong, H.G. Kim, Band gap tuning of lead-substituted BaSnO3 for visible light photocatalysis. Appl. Phys. Lett. 90, 034103 (2007)

    Article  Google Scholar 

  20. L.M. Campos, A. Tontcheva, S. Günes, G. Sonmez, H. Neugebauer, N.S. Sariciftci, F. Wudl, Extended photocurrent spectrum of a low band gap polymer in a bulk heterojunction solar cell. Chem. Mater. 17, 4031–4033 (2005)

    Article  CAS  Google Scholar 

  21. C. Michel, J.M. Moreau, G.D. Achenbechi, R. Gerson, W.J. James, Solid State Commun. 7, 701 (1969)

    Article  CAS  Google Scholar 

  22. F. Kubel, H. Schmid, Acta Crystallogr. Sect. B: Struct. Sci. B46, 698 (1990)

    Article  CAS  Google Scholar 

  23. A. Maqbool, A. Hussain, J.U. Rahman, J.K. Park, T.G. Park, J.S. Song, M.H. Kim, Ferroelectric and piezoelectric properties of SrZrO3-modified Bi0.5Na0.5TiO3 lead-free ceramics. Trans. Nonferrous Met. Soc. China 24, s146–s151 (2014)

    Article  CAS  Google Scholar 

  24. J.R. Chen, W.L. Wang, J.-B. Li, G.H. Rao, X-ray diffraction analysis and specific heat capacity of (Bi1−xLax)FeO3 perovskites. J. Alloy. Compd. 459, 66–70 (2008)

    Article  CAS  Google Scholar 

  25. T.-J. Park, G.C. Papaefthymiou, A.J. Viescas, A.R. Moodenbaugh, S.S. Wong, Size-dependent magnetic properties of single-crystalline multiferroic BiFeO3 nanoparticles. Nano Lett. 7, 766–772 (2007)

    Article  CAS  Google Scholar 

  26. T. Zheng, C. Zhao, J. Wu, K. Wang, J.-F. Li, Large strain of lead-free bismuth ferrite ternary ceramics at elevated temperature. Scripta Mater. 155, 11–15 (2018)

    Article  CAS  Google Scholar 

  27. C. Ederer, N.A. Spaldin, Influence of strain and oxygen vacancies on the magnetoelectric properties of multiferroic bismuth ferrite. Phys. Rev. B. 71, 224103 (2005)

    Article  Google Scholar 

  28. B.M. Al Maswari, J. Ahmed, N. Alzaqri, T. Ahamad, Y. Mao, A. Hezam, B.M. Venkatesha, Synthesis of perovskite bismuth ferrite embedded nitrogen-doped carbon (BiFeO3-NC) nanocomposite for energy storage application. J. Energy Storage 44, 103515 (2021)

    Article  Google Scholar 

  29. R. Palai, R.S. Katiyar, H. Schmid, P. Tissot, S.J. Clark, J. Robertson, S.A.T. Redfern, G. Catalan, J.F. Scott, The beta phase of multiferroic bismuth ferrite and its beta-gamma metal-insulator transition. Phys. Rev. B 77, 014110 (2008)

    Article  Google Scholar 

  30. X. Zhu, Q. Hang, Z. Xing, Y. Yang, J. Zhu, Z. Liu, N. Ming, P. Zhou, Y.E. Song, Z. Li, T. Yu, Z. Zou, Microwave hydrothermal synthesis, structural characterization, and visible-light photocatalytic activities of single-crystalline bismuth ferric nanocrystals. J. Am. Ceram. Soc. 94, 2688–2693 (2011)

    Article  CAS  Google Scholar 

  31. S.K. Parida, Influence of cerium substitution on structural and dielectric properties of the modified BiFeO3-PbTiO3 ceramics. Ferroelectric 583, 19–32 (2021)

    Article  CAS  Google Scholar 

  32. V.D. Mote, Y. Purushotham, B.N. Dole, Williamson-Hall analysis in estimation of lattice strain in nanometer-sized ZnO particle. J. Theor. Appl. Phys. 6, 1–8 (2012)

    Article  Google Scholar 

  33. C.-T. Xia, V.M. Fuenzalida, R.A. Zarate, Electrochemical preparation of crystallized Ba1-xSrxMoO4 solid-solution films at room temperature. J. Alloys Compd. 316, 250–255 (2001)

    Article  CAS  Google Scholar 

  34. S. Mishra, R.N.P. Choudhary, S.K. Parida, Structural, dielectric, electrical and optical properties of a double perovskite: BaNaFeWO6 for some device applications. J. Mol. Struct. 1265, 133353–133367 (2022)

    Article  CAS  Google Scholar 

  35. S.K. Parida, Studies on structural, dielectric, and optical properties of Cu/W double substituted calcium manganite for solar cells and thermistor applications. Phase Transit. 94, 1033–1052 (2021)

    Article  CAS  Google Scholar 

  36. M.R. Islam, M.S. Islam, M.A. Zubair, H.M. Usama, M.S. Azam, A. Sharif, Evidence of super-paramagnetism and improved electrical properties in Ba and Ta co-doped BiFeO3 ceramics. Alloys Compd. 735, 2584–2596 (2018)

    Article  CAS  Google Scholar 

  37. J. Liu, C.G. Duan, W.N. Mei, R.W. Smith, J.R. Hardy, Dielectric properties and Maxwell-Wagner relaxation of compounds ACu3Ti4O12(A=Ca, Bi2/3, Y2/3, La2/3). J. Appl. Phys. 98, 1–6 (2005)

    Article  Google Scholar 

  38. M. Atif, M. Idrees, M. Nadeem, M. Siddique, M.W. Ashraf, Investigation on the structural, dielectric and impedance analysis of manganese substituted cobalt ferrite i.e. Co1– xMnxFe2O4 (0.0 ≤ x ≤ 0.4). RSC Adv. 6, 20876–20885 (2016)

    Article  CAS  Google Scholar 

  39. S. Mishra, R.N.P. Choudhary, S.K. Parida, Structural, dielectric, electrical and optical properties of Li/Fe modified barium tungstate double perovskite for electronic devices. Ceram. Int. 48, 17020–17033 (2022)

    Article  CAS  Google Scholar 

  40. M. Lal, M. Chandrasekhar, R. Rai, P. Kumar, Structural, dielectric and impedance studies of KNNS–BKT ceramics. Am. J. Mater. Sci. 7, 25–34 (2017)

    Google Scholar 

  41. P.G.R. Achary, A.A. Nayak, R.K. Bhuyan, R.N.P. Choudhary, S.K. Parida, Effect of cerium dopant on the structural and electrical properties of SrMnO3 single perovskite. J. Mol. Struct. 1226, 129391–129399 (2021)

    Article  CAS  Google Scholar 

  42. S.K. Parida, R.N.P. Choudhary, Preparation method and cerium dopant effects on the properties of BaMnO3 single perovskite. Phase Transit. 93, 981–991 (2020)

    Article  CAS  Google Scholar 

  43. A.K. Pradhan, K. Zhang, D. Hunter, J.B. Dadson, G.B. Loiutts, P. Bhattacharya, R. Katiyar, J. Zhang, D.J. Sellmyer, U.N. Roy, Y. Cui, A. Burger, Magnetic and electrical properties of single-phase multiferroic BiFeO3. J. Appl. Phys. 97, 3–6 (2005)

    Article  Google Scholar 

  44. R. Ranjan, R. Kumar, N. Kumar, B. Behera, R.N.P. Choudhary, Impedance and electric modulus analysis of Sm-modified Pb(Zr0.55Ti0.45)1x/4O3 ceramics. J. Alloys Compd. 509, 6388–6394 (2011)

    Article  CAS  Google Scholar 

  45. M. Hanief Najar, K. Majid, Investigation of the transport properties of PPy/[Co (EDTA) NH 3 Cl] $ H2O nanocomposite prepared by chemical oxidation method. RSC Adv. 6, 25449–25459 (2016)

    Article  Google Scholar 

  46. E.V. Gopalan, K.A. Malini, S. Saravanan, D.S. Kumar, Y. Yoshida, M.R. Anantharaman, Evidence for polaron conduction in nanostructured manganese ferrite. J. Phys. D Appl. Phys. 41, 185005–185013 (2008)

    Article  Google Scholar 

  47. S. Sahoo, P.K. Mahapatra, R.N.P. Choudhary, M.L. Nandagoswamy, Dielectric and impedance spectroscopy of (Ba, Sm)(Ti, Fe)O3 system in the low-medium frequency range. J. Mater. Sci.: Mater. Electron. 26, 6572–6584 (2015)

    CAS  Google Scholar 

  48. B. Senthilkumar, R. Kalai Selvan, P. Vinothbabu, I. Perelshtein, A. Gedanken, Structural, magnetic, electrical and electrochemical properties of NiFe2O4 synthesized by the molten salt technique. Mater. Chem. Phys. 130, 285–292 (2011)

    Article  CAS  Google Scholar 

  49. L. D’Amario, J. Föhlinger, G. Boschloo, L. Hammarström, Unveiling hole trapping and surface dynamics of NiO nanoparticles. Chem. Sci. 9, 223–230 (2018)

    Article  Google Scholar 

  50. H. Dixit, R. Saniz, D. Lamoen, B. Partoens, The quasiparticle band structure of zincblende and rocksalt ZnO. J. Phys.: Condens. Matter 22, 125505 (2010)

    CAS  Google Scholar 

  51. V. Kumar, J.K. Singh, Model for calculating the refractive index of different materials. Indian J. Pure Appl. Phys. 48, 571–574 (2010)

    CAS  Google Scholar 

  52. U.K. Panigrahi, B. Sahu, H.G. Behuria, S.K. Sahu, S.P. Dhal, S. Hussain, P. Mallick, Synthesis, characterization and bioactivity of thio-acetamide modified ZnO nanoparticles embedded in zinc acetate matrix. Nano Express 2, 010012 (2021)

    Article  Google Scholar 

  53. S. Sumathi, V. Lakshmipriya, Structural, magnetic, electrical and catalytic activity of copper and bismuth co-substituted cobalt ferrite nanoparticles. J. Mater. Sci.: Mater. Electron. 28, 2795–2802 (2017)

    CAS  Google Scholar 

  54. S.K. Parida, Structural, electrical and optical properties of zinc and tungsten modified lead titanate ceramics. SPIN 11, 2150018–2150114 (2021)

    Article  CAS  Google Scholar 

  55. A. Kumar, K.C. James Raju, J. Ryu, A.R. James, Composition dependent ferro-piezo hysteresis loops and energy density properties of mechanically activated (Pb1−xLax) (Zr0.60Ti0.40)O3 ceramics. Appl. Phys. A 126, 1–10 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to express their heartfelt gratitude to Siksha O Anusandhan Deemed to be University, Bhubaneswar, for providing experimental facilities. We would also like to thank Bandana, Preeti, and Sagarika for their encouragement and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Umakant Prasad.

Ethics declarations

Conflict of interest

All of the authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sourav, S.K., Parida, S.K., Choudhary, R.N.P. et al. Structural, microstructural, dielectric, transport, and optical properties of modified bismuth ferrite. J. Korean Ceram. Soc. 60, 687–701 (2023). https://doi.org/10.1007/s43207-023-00294-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43207-023-00294-5

Keywords

Navigation