Skip to main content

Advertisement

Log in

Novel Approaches Used in Ovarian Tissue Transplantation for Fertility Preservation: Focus on Tissue Engineering Approaches and Angiogenesis Capacity

  • Review
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Due to the impact of the modern lifestyle, female infertility has been reduced because of different reasons. For example, in combined chemotherapeutic therapies, a small fraction of cancer survivors has faced different post-complications and side effects such as infertility. Besides, in modern society, delayed age of childbearing has also affected fertility. Nowadays, ovarian tissue cryopreservation and transplantation (OTC/T) is considered one of the appropriate strategies for the restoration of ovarian tissue and bioactivity in patients with the loss of reproductive function. In this regard, several procedures have been considered to improve the efficacy and safety of OTT. Among them, a surgical approach is used to transplant ovaries into the optimal sites, but the existence of ischemic changes and lack of appropriate revascularization can lead to bulk follicular atresia. Besides, the role of OTC/T is limited in women of advanced maternal age undergoing lifesaving chemo-radiation. As a correlate, the development of de novo approaches with efficacious regenerative outcomes is highly welcomed. Tissue engineering shows high therapeutic potentialities to restore fertility in males and females using the combination of biomaterials, cells, and growth factors. Unfortunately, most synthetic and natural materials are at the experimental stage and only the efficacy has been properly evaluated in limited cases. Along with these descriptions, strategies associated with the induction of angiogenesis in transplanted ovaries can diminish the injuries associated with ischemic changes. In this review, the authors tried to summarize recent techniques, especially tissue engineering approaches for improving ovarian function and fertility by focusing on angiogenesis and neovascularization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

Not applicable.

Abbreviations

Ang:

Angiopoietin

ASCs:

Adipose tissue–derived stem cells

bFGF:

Basic fibroblast growth factor

ECM:

Extracellular matrix

ECs:

Endothelial cells

FGF:

Fibroblast growth factor

GAGs:

Glycosaminoglycans

HA:

Hyaluronic acid

hMG:

Human menopausal gonadotropin

IVF:

In vitro fertilization

IVM:

In vitro maturation

MSCs:

mesenchymal stem cells

OTC:

ovarian tissue cryopreservation

OTT:

ovarian tissue transplantation

PEG:

polyethylene glycol

TE:

tissue engineering

TGF-β:

transforming growth factor-beta

VEGF:

vascular endothelial growth factor

References

  1. Donnez J, Martinez-Madrid B, Jadoul P, Van Langendonckt A, Demylle D, Dolmans M-M. Ovarian tissue cryopreservation and transplantation: a review. Hum Reprod Update. 2006;12(5):519–35.

    Article  PubMed  Google Scholar 

  2. Klocke S, Bündgen N, Köster F, Eichenlaub-Ritter U, Griesinger G. Slow-freezing versus vitrification for human ovarian tissue cryopreservation. Arch Gynecol Obstet. 2015;291(2):419–26.

    Article  CAS  PubMed  Google Scholar 

  3. Donnez J, Silber S, Andersen CY, Demeestere I, Piver P, Meirow D, et al. Children born after autotransplantation of cryopreserved ovarian tissue. A review of 13 live births. Ann Med 2011;43(6):437–50.

  4. Herrero L, Pareja S, Aragonés M, Cobo A, Bronet F, Garcia-Velasco JA. Oocyte versus embryo vitrification for delayed embryo transfer: an observational study. Reprod Biomed Online. 2014;29(5):567–72.

    Article  PubMed  Google Scholar 

  5. Bahroudi Z, Zarnaghi MR, Izadpanah M, Abedelahi A, Niknafs B, Nasrabadi HT, et al. Review of ovarian tissue cryopreservation techniques for fertility preservation. J Gynecol Obstet Hum Reprod. 2021;102290.

  6. Silber S, Goldsmith S. Ovarian tissue cryopreservation and transplantation: scientific and clinical implications. Female and Male Fertility Preservation: Springer; 2022. p. 143–61.

    Google Scholar 

  7. Stachecki JJ, Cohen J. An overview of oocyte cryopreservation. Reprod Biomed Online. 2004;9(2):152–63.

    Article  PubMed  Google Scholar 

  8. von Wolff M, Thaler CJ, Frambach T, Zeeb C, Lawrenz B, Popovici RM, et al. Ovarian stimulation to cryopreserve fertilized oocytes in cancer patients can be started in the luteal phase. Fertil Steril. 2009;92(4):1360–5.

    Article  Google Scholar 

  9. Lucena E, Bernal DP, Lucena C, Rojas A, Moran A, Lucena A. Successful ongoing pregnancies after vitrification of oocytes. Fertil Steril. 2006;85(1):108–11.

    Article  PubMed  Google Scholar 

  10. Mazoochi T, Salehnia M, Valojerdi MR, Mowla SJ. Morphologic, ultrastructural, and biochemical identification of apoptosis in vitrified-warmed mouse ovarian tissue. Fertil Steril. 2008;90(4):1480–6.

    Article  PubMed  Google Scholar 

  11. Silber S. Ovarian tissue cryopreservation and transplantation: scientific implications. J Assist Reprod Genet. 2016;33(12):1595–603.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Joshi S, Savani B, Chow E, Gilleece M, Halter J, Jacobsohn D, et al. Clinical guide to fertility preservation in hematopoietic cell transplant recipients. Bone Marrow Transplant. 2014;49(4):477–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hovatta O. Methods for cryopreservation of human ovarian tissue. Reprod Biomed Online. 2005;10(6):729–34.

    Article  PubMed  Google Scholar 

  14. Shi Q, Xie Y, Wang Y, Li S. Vitrification versus slow freezing for human ovarian tissue cryopreservation: a systematic review and meta-anlaysis. Sci Rep. 2017;7(1):8538.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Amorim C, Gonçalves PBD, Figueiredo JRd. Cryopreservation of oocytes from pre-antral follicles. Hum Reprod Update. 2003;9(2):119–29.

  16. Abedelahi A, Rezaei-Tavirani M, Mohammadnejad D. Fertility preservation among the cancer patients by ovarian tissue cryopreservation, transplantation, and follicular development. Iran j cancer prev. 2013;6(3):123.

    PubMed  PubMed Central  Google Scholar 

  17. Tavana S, Valojerdi MR, Eimani H, Abtahi NS, Fathi R, editors. Auto-transplantation of whole rat ovary in different transplantation sites. Vet Res Forum.; 2017: Faculty of Veterinary Medicine, Urmia University, Urmia, Iran.

  18. Abedelahi A, Salehnia M, Allameh A, Davoodi D. Sodium selenite improves the in vitro follicular development by reducing the reactive oxygen species level and increasing the total antioxidant capacity and glutathione peroxide activity. Hum Reprod. 2010;25(4):977–85.

    Article  CAS  PubMed  Google Scholar 

  19. Gosden R, Baird D, Wade J, Webb R. Restoration of fertility to oophorectomized sheep by ovarian autografts stored at-196 C. Hum Reprod. 1994;9(4):597–603.

    Article  CAS  PubMed  Google Scholar 

  20. Gosden R, Boulton M, Grant K, Webb R. Follicular development from ovarian xenografts in SCID mice. Reprod. 1994;101(3):619–23.

    Article  CAS  Google Scholar 

  21. Gunasena KT, Lakey JR, Villines PM, Critser ES, Critser JK. Allogeneic and xenogeneic transplantation of cryopreserved ovarian tissue to athymic mice. Biol Reprod. 1997;57(2):226–31.

    Article  CAS  PubMed  Google Scholar 

  22. Kim SS, Battaglia DE, Soules MR. The future of human ovarian cryopreservation and transplantation: fertility and beyond. Fertil Steril. 2001;75(6):1049–56.

    Article  CAS  PubMed  Google Scholar 

  23. Oktay K, Karlikaya GG, Aydin BA. Ovarian cryopreservation and transplantation: basic aspects. Mol Cell Endocrinol. 2000;169(1–2):105–8.

    Article  CAS  PubMed  Google Scholar 

  24. Salle B, Lornage J, Demirci B, Vaudoyer F, Poirel MT, Franck M, et al. Restoration of ovarian steroid secretion and histologic assessment after freezing, thawing, and autograft of a hemi-ovary in sheep. Fertil Steril. 1999;72(2):366–70.

    Article  CAS  PubMed  Google Scholar 

  25. Demeestere I, Simon P, Emiliani S, Delbaere A, Englert Y. Orthotopic and heterotopic ovarian tissue transplantation. Hum Reprod Update. 2009;15(6):649–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sonmezer M, Oktay K. Orthotopic and heterotopic ovarian tissue transplantation. Best Pract Res Clin Obstet Gynaecol. 2010;24(1):113–26.

    Article  PubMed  Google Scholar 

  27. Meirow D, Ra’anani H, Biderman H. Ovarian tissue cryopreservation and transplantation: a realistic, effective technology for fertility preservation. Hum Fertil.: Springer; 2014. p. 455–73.

  28. Segers I, Bardhi E, Mateizel I, Van Moer E, Schots R, Verheyen G, et al. Live births following fertility preservation using in-vitro maturation of ovarian tissue oocytes. Hum Reprod. 2020;35(9):2026–36.

    Article  PubMed  Google Scholar 

  29. Andersen ST, Pors SE, la Cour PL, Colmorn LB, Macklon KT, Ernst E, et al. Ovarian stimulation and assisted reproductive technology outcomes in women transplanted with cryopreserved ovarian tissue: a systematic review. Fertil Steril. 2019;112(5):908–21.

    Article  PubMed  Google Scholar 

  30. Gook DA, McCully B, Edgar D, McBain J. Development of antral follicles in human cryopreserved ovarian tissue following xenografting. Hum Reprod. 2001;16(3):417–22.

    Article  CAS  PubMed  Google Scholar 

  31. Newton H, Illingworth P. In-vitro growth of murine pre-antral follicles after isolation from cryopreserved ovarian tissue. Hum Reprod. 2001;16(3):423–9.

    Article  CAS  PubMed  Google Scholar 

  32. Sztein J, Sweet H, Farley J, Mobraaten L. Cryopreservation and orthotopic transplantation of mouse ovaries: new approach in gamete banking. Biol Reprod. 1998;58(4):1071–4.

    Article  CAS  PubMed  Google Scholar 

  33. Van den Broecke R, Liu J, Van der Elst J, Dhont M. Timing of FSH-stimulation and follicular development in cryopreserved human ovarian grafts. Reprod Biomed Online. 2002;4(1):21–6.

    Article  PubMed  Google Scholar 

  34. Mhatre P, Mhatre J, Magotra R, editors. Ovarian transplant: a new frontier. Transplantation proceedings; 2005: Elsevier.

  35. Kim SS, Hwang I-T, Lee H-C. Heterotopic autotransplantation of cryobanked human ovarian tissue as a strategy to restore ovarian function. Fertil Steril. 2004;82(4):930–2.

    Article  PubMed  Google Scholar 

  36. Sanchez M, Alama P, Gadea B, Soares S, Simon C, Pellicer A. Fresh human orthotopic ovarian cortex transplantation: long-term results. Hum Reprod. 2007;22(3):786–91.

    Article  CAS  PubMed  Google Scholar 

  37. Shapira M, Dolmans M-M, Silber S, Meirow D. Evaluation of ovarian tissue transplantation: results from three clinical centers. Fertil Steril. 2020;114(2):388–97.

    Article  PubMed  Google Scholar 

  38. Donnez J, Squifflet J, Jadoul P, Demylle D, Cheron A-C, Van Langendonckt A, et al. Pregnancy and live birth after autotransplantation of frozen-thawed ovarian tissue in a patient with metastatic disease undergoing chemotherapy and hematopoietic stem cell transplantation. Fertil Steril 2011;95(5):1787. e1-. e4.

  39. Rall WF, Fahy GM. Ice-free cryopreservation of mouse embryos at− 196 C by vitrification. Nature. 1985;313(6003):573–5.

    Article  CAS  PubMed  Google Scholar 

  40. Shikanov A, Zhang Z, Xu M, Smith RM, Rajan A, Woodruff TK, et al. Fibrin encapsulation and vascular endothelial growth factor delivery promotes ovarian graft survival in mice. Tissue Eng Part A. 2011;17(23–24):3095–104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Tavana S, Azarnia M, Valojerdi MR, Shahverdi A. Hyaluronic acid-based hydrogel scaffold without angiogenic growth factors enhances ovarian tissue function after autotransplantation in rats. Biomed Mater. 2016;11(5): 055006.

    Article  PubMed  Google Scholar 

  42. Hassanpour M, Rezabakhsh A, Pezeshkian M, Rahbarghazi R, Nouri M. Distinct role of autophagy on angiogenesis: highlights on the effect of autophagy in endothelial lineage and progenitor cells. Stem Cell Res Ther. 2018;9(1):305.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Nassiri SM, Rahbarghazi R. Interactions of mesenchymal stem cells with endothelial cells. Stem Cells Dev. 2014;23(4):319–32.

    Article  PubMed  Google Scholar 

  44. Rahbarghazi R, Nassiri SM, Ahmadi SH, Mohammadi E, Rabbani S, Araghi A, et al. Dynamic induction of pro-angiogenic milieu after transplantation of marrow-derived mesenchymal stem cells in experimental myocardial infarction. Int J Cardiol. 2014;173(3):453–66.

    Article  PubMed  Google Scholar 

  45. Redmer DA, Reynolds LP. Angiogenesis in the ovary. Rev Reprod. 1996;1(3):182–92.

    Article  CAS  PubMed  Google Scholar 

  46. Hassanpour M, Rezabakhsh A, Rahbarghazi R, Nourazarian A, Nouri M, Avci ÇB, et al. Functional convergence of Akt protein with VEGFR-1 in human endothelial progenitor cells exposed to sera from patient with type 2 diabetes mellitus. Microvasc Res. 2017;114:101–13.

    Article  CAS  PubMed  Google Scholar 

  47. Ferrara N, Davis-Smyth T. The biology of vascular endothelial growth factor. Endocr Rev. 1997;18(1):4–26.

    Article  CAS  PubMed  Google Scholar 

  48. Abulafia O, Sherer DM. Angiogenesis of the ovary. Am J Obstet Gynecol. 2000;182(1):240–6.

    Article  CAS  PubMed  Google Scholar 

  49. Yamamoto S, Konishi I, Tsuruta Y, Nanbu K, Mandai M, Kuroda H, et al. Expression of vascular endothelial growth factor (VEGF) during folliculogenesis and corpus luteum formation in the human ovary. Gynecol Endocrinol. 1997;11(6):371–81.

    Article  CAS  PubMed  Google Scholar 

  50. Phillips HS, Hains J, Leung DW, Ferrara N. Vascular endothelial growth factor is expressed in rat corpus luteum. Endocrinology. 1990;127(2):965–7.

    Article  CAS  PubMed  Google Scholar 

  51. Yang H, Lee HH, Lee HC, Ko DS, Kim SS. Assessment of vascular endothelial growth factor expression and apoptosis in the ovarian graft: can exogenous gonadotropin promote angiogenesis after ovarian transplantation? Fertil Steril. 2008;90(4):1550–8.

    Article  CAS  PubMed  Google Scholar 

  52. Dissen G, Lara H, Fahrenbach W, Costa M, Ojeda S. Immature rat ovaries become revascularized rapidly after autotransplantation and show a gonadotropin-dependent increase in angiogenic factor gene expression. Endocrinology. 1994;134(3):1146–54.

    Article  CAS  PubMed  Google Scholar 

  53. Jabbour HN, Sales KJ, Catalano RD, Norman JE. Focus on vascular function in female reproduction. Reproduction. 2009;138:903–19.

    Article  CAS  PubMed  Google Scholar 

  54. Fraser HM, Duncan WC. SRB reproduction, fertility and development award lecture 2008. Regulation and manipulation of angiogenesis in the ovary and endometrium. Reprod Fertil Dev 2009;21(3):377–92.

  55. Amini H, Rezaie J, Vosoughi A, Rahbarghazi R, Nouri M. Cardiac progenitor cells application in cardiovascular disease. Journal of cardiovascular and thoracic research. 2017;9(3):127–32.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Damous LL, da Silva SM, Carbonel AAF, de Jesus SM, Baracat EC, de Souza Montero EF. Progressive evaluation of apoptosis, proliferation, and angiogenesis in fresh rat ovarian autografts under remote ischemic preconditioning. Reprod Sci. 2016;23(6):803–11.

    Article  CAS  PubMed  Google Scholar 

  57. Takae S, Suzuki N. Current state and future possibilities of ovarian tissue transplantation. Reprod Med Biol. 2019;18(3):217–24.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Cohen Y, Dafni H, Avni R, Raz T, Biton I, Hemmings B, et al. In search of signaling pathways critical for ovarian graft reception: Akt1 is essential for long-term survival of ovarian grafts. Fertil Steril. 2014;101(2):536–44. e2.

  59. Friedman O, Orvieto R, Fisch B, Felz C, Freud E, Ben-Haroush A, et al. Possible improvements in human ovarian grafting by various host and graft treatments. Hum Reprod. 2012;27(2):474–82.

    Article  CAS  PubMed  Google Scholar 

  60. Nassiri SM, Rahbarghazi R. Interactions of mesenchymal stem cells with endothelial cells. Stem Cells and Development. 2013;23(4):319–32.

    Article  PubMed  Google Scholar 

  61. Ylä-Herttuala S, Rissanen TT, Vajanto I, Hartikainen J. Vascular endothelial growth factors: biology and current status of clinical applications in cardiovascular medicine. J Am Coll Cardiol. 2007;49(10):1015–26.

    Article  PubMed  Google Scholar 

  62. Li S-H, Hwu Y-M, Lu C-H, Chang H-H, Hsieh C-E, Lee RK-K. VEGF and FGF2 improve revascularization, survival, and oocyte quality of cryopreserved, subcutaneously-transplanted mouse ovarian tissues. Int J Mol Sci. 2016;17(8):1237.

  63. Starke RD, Ferraro F, Paschalaki KE, Dryden NH, McKinnon TA, Sutton RE, et al. Endothelial von Willebrand factor regulates angiogenesis. Blood. 2011;117(3):1071–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Gao J-M, Yan J, Li R, Li M, Yan L-Y, Wang T-R, et al. Improvement in the quality of heterotopic allotransplanted mouse ovarian tissues with basic fibroblast growth factor and fibrin hydrogel. Hum Reprod. 2013;28(10):2784–93.

    Article  CAS  PubMed  Google Scholar 

  65. Przybylski M. A review of the current research on the role of bFGF and VEGF in angiogenesis. J Wound Care. 2009;18(12):516–9.

    Article  CAS  PubMed  Google Scholar 

  66. Kang B-J, Wang Y, Zhang L, Xiao Z, Li S-W. bFGF and VEGF improve the quality of vitrified-thawed human ovarian tissues after xenotransplantation to SCID mice. J Assist Reprod Genet. 2016;33(2):281–9.

    Article  PubMed  Google Scholar 

  67. Zhang Y, Xia X, Yan J, Yan L, Lu C, Zhu X, et al. Mesenchymal stem cell-derived angiogenin promotes primodial follicle survival and angiogenesis in transplanted human ovarian tissue. Reprod Biol Endocrinol. 2017;15(1):1–12.

    Article  Google Scholar 

  68. Lafosse A, Desmet C, Aouassar N, Andre W, Hanet M-S, Beauloye C, et al. Autologous adipose stromal cells seeded onto a human collagen matrix for dermal regeneration in chronic wounds: clinical proof of concept. Plast Reconstr Surg. 2015;136(2):279–95.

    Article  CAS  PubMed  Google Scholar 

  69. Moon MH, Kim SY, Kim YJ, Kim SJ, Lee JB, Bae YC, et al. Human adipose tissue-derived mesenchymal stem cells improve postnatal neovascularization in a mouse model of hindlimb ischemia. Cell Physiol Biochem. 2006;17(5–6):279–90.

    Article  CAS  PubMed  Google Scholar 

  70. Dolmans MM, Cacciottola L, Amorim CA, Manavella D. Translational research aiming to improve survival of ovarian tissue transplants using adipose tissue-derived stem cells. Acta Obstet Gynecol Scand. 2019;98(5):665–71.

    Article  CAS  PubMed  Google Scholar 

  71. Man L, Park L, Bodine R, Ginsberg M, Zaninovic N, Schattman G, et al. Co-transplantation of human ovarian tissue with engineered endothelial cells: a cell-based strategy combining accelerated perfusion with direct paracrine delivery. J Vis Exp. 2018;135: e57472.

    Google Scholar 

  72. Shojafar E, Mehranjani MS, Shariatzadeh SMA. Adipose-derived mesenchymal stromal cell transplantation at the graft site improves the structure and function of autografted mice ovaries: a stereological and biochemical analysis. Cytotherapy. 2018;20(11):1324–36.

    Article  CAS  PubMed  Google Scholar 

  73. Ding L, Yan G, Wang B, Xu L, Gu Y, Ru T, et al. Transplantation of UC-MSCs on collagen scaffold activates follicles in dormant ovaries of POF patients with long history of infertility. Science China Life Sciences. 2018;61(12):1554–65.

    Article  CAS  PubMed  Google Scholar 

  74. Damous LL, Nakamuta JS, de Carvalho AES, Carvalho KC, Soares-Jr JM, de Jesus SM, et al. Does adipose tissue-derived stem cell therapy improve graft quality in freshly grafted ovaries? Reprod Biol Endocrinol. 2015;13(1):1–11.

    Article  Google Scholar 

  75. Herraiz S, Buigues A, Díaz-García C, Romeu M, Martínez S, Gómez-Seguí I, et al. Fertility rescue and ovarian follicle growth promotion by bone marrow stem cell infusion. Fertil Steril 2018;109(5):908–18. e2.

  76. Manavella D, Cacciottola L, Pommé S, Desmet C, Jordan B, Donnez J, et al. Two-step transplantation with adipose tissue-derived stem cells increases follicle survival by enhancing vascularization in xenografted frozen–thawed human ovarian tissue. Hum Reprod. 2018;33(6):1107–16.

    Article  CAS  PubMed  Google Scholar 

  77. Wall MA, Padmanabhan V, Shikanov A. Hormonal stimulation of human ovarian xenografts in mice: studying folliculogenesis, activation, and oocyte maturation. Endocrinology. 2020;161(12):bqaa194.

  78. Zheng X, Chen J, Yang Y, Pei X, Ma W, Ma H, et al. Exogenous luteinizing hormone promotes ovarian survival and function during cryopreservation and transplantation. Biochem Biophys Res Commun. 2020;526(2):424–30.

    Article  CAS  PubMed  Google Scholar 

  79. Weissman A, Gotlieb L, Colgan T, Jurisicova A, Greenblatt EM, Casper RF. Preliminary experience with subcutaneous human ovarian cortex transplantation in the NOD-SCID mouse. Biol Reprod. 1999;60(6):1462–7.

    Article  CAS  PubMed  Google Scholar 

  80. Chiti MC, Dolmans M-M, Donnez J, Amorim C. Fibrin in reproductive tissue engineering: a review on its application as a biomaterial for fertility preservation. Ann Biomed Eng. 2017;45(7):1650–63.

    Article  CAS  PubMed  Google Scholar 

  81. Nazary Abrbekoh F, Salimi L, Saghati S, Amini H, Fathi Karkan S, Moharamzadeh K, et al. Application of microneedle patches for drug delivery; doorstep to novel therapies. Journal of Tissue Engineering. 2022;13:20417314221085390.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Hassanpour M, Fathi Karkan S, Rahbarghazi R, Nouri M, Amini H, Saghati S, et al. Culture of rabbit bone marrow mesenchymal stem cells on polyurethane/pyrrole surface promoted differentiation into endothelial lineage. Artif Organs. 2021;45(9):E324–34.

    Article  CAS  PubMed  Google Scholar 

  83. Berthiaume F, Maguire TJ, Yarmush ML. Tissue engineering and regenerative medicine: history, progress, and challenges. Annu Rev Chem Biomol Eng. 2011;2:403–30.

    Article  PubMed  Google Scholar 

  84. Guo B, Ma PX. Conducting polymers for tissue engineering. Biomacromol. 2018;19(6):1764–82.

    Article  CAS  Google Scholar 

  85. Jones AS, Shikanov A. Ovarian tissue cryopreservation and novel bioengineering approaches for fertility preservation. Curr Breast Cancer Rep. 2020:1–10.

  86. Gilbert TW, Sellaro TL, Badylak SF. Decellularization of tissues and organs. Biomaterials. 2006;27(19):3675–83.

    CAS  PubMed  Google Scholar 

  87. Liao J, Xu B, Zhang R, Fan Y, Xie H, Li X. Applications of decellularized materials in tissue engineering: advantages, drawbacks and current improvements, and future perspectives. J Mater Chem B. 2020;8(44):10023–49.

    Article  CAS  PubMed  Google Scholar 

  88. Peng G, Liu H, Fan Y. Biomaterial scaffolds for reproductive tissue engineering. Ann Biomed Eng. 2017;45(7):1592–607.

    Article  PubMed  Google Scholar 

  89. Gupta SK, Mishra NC, Dhasmana A. Decellularization methods for scaffold fabrication. Decellularized Scaffolds and Organogenesis: Springer; 2017. p. 1–10.

    Google Scholar 

  90. Crapo PM, Gilbert TW, Badylak SF. An overview of tissue and whole organ decellularization processes. Biomaterials. 2011;32(12):3233–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Laronda MM, Jakus AE, Whelan KA, Wertheim JA, Shah RN, Woodruff TK. Initiation of puberty in mice following decellularized ovary transplant. Biomaterials. 2015;50:20–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Alshaikh AB, Padma AM, Dehlin M, Akouri R, Song MJ, Brännström M, et al. Decellularization and recellularization of the ovary for bioengineering applications; studies in the mouse. Reprod Biol Endocrinol. 2020;18(1):1–10.

    Article  Google Scholar 

  93. Alshaikh AB, Padma AM, Dehlin M, Akouri R, Song MJ, Brännström M, et al. Decellularization of the mouse ovary: comparison of different scaffold generation protocols for future ovarian bioengineering. J Ovarian Res. 2019;12(1):58.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Oktay K, Bedoschi G, Pacheco F, Turan V, Emirdar V. First pregnancies, live birth, and in vitro fertilization outcomes after transplantation of frozen-banked ovarian tissue with a human extracellular matrix scaffold using robot-assisted minimally invasive surgery. Am J Obstet Gynecol. 2016;214(1):94. e1-. e9.

  95. Fernández-Pérez J, Ahearne M. The impact of decellularization methods on extracellular matrix derived hydrogels. Sci Rep. 2019;9(1):1–12.

    Google Scholar 

  96. Nemati S, Alizadeh Sardroud H, Baradar Khoshfetrat A, Khaksar M, Ahmadi M, Amini H, et al. The effect of alginate–gelatin encapsulation on the maturation of human myelomonocytic cell line U937. J Tissue Eng Regen Med. 2019;13(1):25–35.

    Article  CAS  PubMed  Google Scholar 

  97. Tehrani AS, Mazoochi T, Taheri MA, Aghadavood E, Salehnia M. The effects of ovarian encapsulation on morphology and expression of apoptosis-related genes in vitrified mouse ovary. J Reprod Fertil. 2021;22(1):23. https://doi.org/10.18502/jri.v22i1.4992.

    Article  Google Scholar 

  98. Rios PD, Kniazeva E, Lee HC, Xiao S, Oakes RS, Saito E, et al. Retrievable hydrogels for ovarian follicle transplantation and oocyte collection. Biotechnol Bioeng. 2018;115(8):2075–86. https://doi.org/10.1002/bit.26721.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Yang C, Chung N, Song C, Youm HW, Lee K, Lee JR. Promotion of angiogenesis toward transplanted ovaries using nitric oxide releasing nanoparticles in fibrin hydrogel. Biofabrication. 2021;14(1): 011001. https://doi.org/10.1088/1758-5090/ac3f28.

    Article  Google Scholar 

  100. Spicer CD. Hydrogel scaffolds for tissue engineering: the importance of polymer choice. Polym Chem. 2020;11(2):184–219. https://doi.org/10.1039/C9PY01021A.

    Article  CAS  Google Scholar 

  101. Jamalzaei P, Valojerdi MR, Montazeri L, Baharvand H. Applicability of hyaluronic acid-alginate hydrogel and ovarian cells for in vitro development of mouse preantral follicles. Cell J. 2020;22(Suppl 1):49. https://doi.org/10.22074/cellj.2020.6925.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Zhu Z, Wang Y-M, Yang J, Luo X-S. Hyaluronic acid: a versatile biomaterial in tissue engineering. Plast Aesthet Res. 2017;4:219–27. https://doi.org/10.20517/2347-9264.2017.71.

  103. Akhavan-Taheri M, Rezazadeh Valojerdi M, Ebrahimi B. The effect of vitrified ovarian tissue autotransplantation encapsulated with hyaluronic acid hydrogen on VEGF, CD31 and CD34 gene expression in rat. KAUMS Journal (FEYZ). 2021;25(1):724–31.

    Google Scholar 

  104. Song E, Kim SY, Chun T, Byun H-J, Lee YM. Collagen scaffolds derived from a marine source and their biocompatibility. Biomaterials. 2006;27(15):2951–61. https://doi.org/10.1016/j.biomaterials.2006.01.015.

    Article  CAS  PubMed  Google Scholar 

  105. Copes F, Pien N, Van Vlierberghe S, Boccafoschi F, Mantovani D. Collagen-based tissue engineering strategies for vascular medicine. Front Bioeng Biotechnol. 2019;7:166. https://doi.org/10.3389/fbioe.2019.00166.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Khayyatan F, Emami SH, Mehrjerdi NZ, Baharvand H. A simple and efficient method to improve mechanical properties of collagen scaffolds by UV irradiation. Sci Technol. 2011;23(5):371–8.

    Google Scholar 

  107. Saghati S, Rahbarghazi R, Baradar Khoshfetrat A, Moharamzadeh K, Tayefi Nasrabadi H, Roshangar L. Phenolated alginate-collagen hydrogel induced chondrogenic capacity of human amniotic mesenchymal stem cells. J Biomater Appl. 2021;36(5):789–802. https://doi.org/10.1177/08853282211021692.

    Article  CAS  PubMed  Google Scholar 

  108. Moshaverinia A, Chen C, Akiyama K, Ansari S, Xu X, Chee WW, et al. Alginate hydrogel as a promising scaffold for dental-derived stem cells: an in vitro study. J Mater Sci: Mater Med. 2012;23(12):3041–51. https://doi.org/10.1007/s10856-012-4759-3.

    Article  CAS  PubMed  Google Scholar 

  109. Dehghan M, Salehnia M, Shahbazi S. Assessment of follicular development of immature mouse ovarian tissue encapsulated in sodium alginate grafted under the kidney capsule. Pathol Res. 2019;22(3):121–8.

    Google Scholar 

  110. Laronda MM, Duncan FE, Hornick JE, Xu M, Pahnke JE, Whelan KA, et al. Alginate encapsulation supports the growth and differentiation of human primordial follicles within ovarian cortical tissue. J Assist Reprod Genet. 2014;31(8):1013–28. https://doi.org/10.1007/s10815-014-0252-x.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Potier E, Noailly J, Sprecher CM, Ito K. Influencing biophysical properties of fibrin with buffer solutions. J Mater Sci. 2010;45(9):2494–503. https://doi.org/10.1007/s10853-010-4221-1.

    Article  CAS  Google Scholar 

  112. Lorentz KM, Kontos S, Frey P, Hubbell JA. Engineered aprotinin for improved stability of fibrin biomaterials. Biomaterials. 2011;32(2):430–8. https://doi.org/10.1016/j.biomaterials.2010.08.109.

    Article  CAS  PubMed  Google Scholar 

  113. Mehdinia Z, Ashrafi M, Fathi R, Taheri P, Valojerdi MR. Restoration of estrous cycles by co-transplantation of mouse ovarian tissue with MSCs. Cell Tissue Res. 2020;381:509–25. https://doi.org/10.1007/s00441-020-03204-x.

    Article  CAS  PubMed  Google Scholar 

  114. Green LJ, Shikanov A. In vitro culture methods of preantral follicles. Theriogenology. 2016;86(1):229–38. https://doi.org/10.1016/j.theriogenology.2016.04.036.

    Article  PubMed  Google Scholar 

  115. Shikanov A, Smith RM, Xu M, Woodruff TK, Shea LD. Hydrogel network design using multifunctional macromers to coordinate tissue maturation in ovarian follicle culture. Biomaterials. 2011;32(10):2524–31. https://doi.org/10.1016/j.biomaterials.2010.12.027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Day JR, David A, Cichon AL, Kulkarni T, Cascalho M, Shikanov A. Immunoisolating poly (ethylene glycol) based capsules support ovarian tissue survival to restore endocrine function. J Biomed Mater Res A. 2018;106(5):1381–9. https://doi.org/10.1002/jbm.a.36338.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. David A, Day JR, Cichon AL, Lefferts A, Cascalho M, Shikanov A. Restoring ovarian endocrine function with encapsulated ovarian allograft in immune competent mice. Ann Biomed Eng. 2017;45(7):1685–96. https://doi.org/10.1007/s10439-016-1780-6.

    Article  PubMed  Google Scholar 

  118. Kumagai-Braesch M, Jacobson S, Mori H, Jia X, Takahashi T, Wernerson A, et al. The TheraCyte™ device protects against islet allograft rejection in immunized hosts. Cell Transplant. 2013;22(7):1137–46. https://doi.org/10.3727/096368912X657486.

    Article  PubMed  Google Scholar 

  119. Torrance C, Telfer E, Gosden R. Quantitative study of the development of isolated mouse pre-antral follicles in collagen gel culture. Reproduction. 1989;87(1):367–74. https://doi.org/10.1530/jrf.0.0870367.

    Article  CAS  Google Scholar 

  120. Sun J, Tan H. Alginate-based biomaterials for regenerative medicine applications. Materials. 2013;6(4):1285–309. https://doi.org/10.3390/ma6041285.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Dadashzadeh A, Moghassemi S, Shavandi A, Amorim CA. A review on biomaterials for ovarian tissue engineering. Acta Biomater. 2021;135:48–63. https://doi.org/10.1016/j.actbio.2021.08.026.

    Article  CAS  PubMed  Google Scholar 

  122. Creux H, Monnier P, Son W-Y, Buckett W. Thirteen years’ experience in fertility preservation for cancer patients after in vitro fertilization and in vitro maturation treatments. J Assist Reprod Genet. 2018;35(4):583–92. https://doi.org/10.1007/s10815-018-1138-0.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors wish to appreciate the personnel of the Department of Anatomical Sciences for their help and guidance.

Funding

The study was supported by a grant from Tabriz University of Medical Sciences (IR.TBZMED.REC.1400.140).

Author information

Authors and Affiliations

Authors

Contributions

Ali Abedelahi and Reza Rahbarghazi supervised the study. Melika Izadpanah and Amirabbas Majdi collected data and prepared the manuscript. And all authors have read and approved the manuscript.

Corresponding author

Correspondence to Ali Abedelahi.

Ethics declarations

Ethics Approval and Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Izadpanah, M., Rahbarghazi, R., Seghinsara, A.M. et al. Novel Approaches Used in Ovarian Tissue Transplantation for Fertility Preservation: Focus on Tissue Engineering Approaches and Angiogenesis Capacity. Reprod. Sci. 30, 1082–1093 (2023). https://doi.org/10.1007/s43032-022-01048-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43032-022-01048-0

Keywords

Navigation