Skip to main content
Log in

Role of Placental Glucose Transporters in Determining Fetal Growth

  • Review
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Maternal nutrient availability and its transport through the placenta are crucial for fetal development. Nutrients are transported to the fetus via specific transporters present on the microvillous (MVM) and basal membrane (BM) of the placenta. Glucose is the most abundant nutrient transferred to the fetus and plays a key role in the fetal growth and development. The transfer of glucose across the human placenta is directly proportional to maternal glucose concentrations, and is mediated by glucose transporter family proteins (GLUTs). Maternal glucose concentration influences expression and activity of GLUTs in the MVM (glucose uptake) and BM (glucose delivery). Alteration in the number and function of these transporters may affect the growth and body composition of the fetus. The thin-fat phenotype of the Indian baby (low ponderal index, high adiposity) is proposed as a harbinger of future metabolic risk. We propose that placental function mediated through nutrient transporters contributes to the phenotype of the baby, specifically that glucose transporters will influence neonatal fat. This review discusses the role of various glucose transporters in the placenta in determining fetal growth and body composition, in light of the above hypothesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Source: Modified from Illsley et al. 2000

Fig. 2

Similar content being viewed by others

Data availability

Not applicable.

Code Availability

Not applicable.

References

  1. Simpson JL, Bailey LB, Pietrzik K, Shane B, Holzgreve W. Micronutrients and women of reproductive potential: required dietary intake and consequences of dietary deficiency or excess. Part I--Folate, Vitamin B12, Vitamin B6. J Matern Fetal Neonatal Med. 2010; https://doi.org/10.3109/14767051003678234

  2. Keen CL, Clegg MS, Hanna LA, Lanoue L, Rogers JM, Daston GP, et al. The plausibility of micronutrient deficiencies being a significant contributing factor to the occurrence of pregnancy complications. J Nutr. 2003. https://doi.org/10.1093/jn/133.5.1597S.

    Article  PubMed  Google Scholar 

  3. Camm EJ, Botting KJ, Sferruzzi-Perri AN. Near to one’s heart: the intimate relationship between the placenta and fetal heart. Front Physiol. 2018. https://doi.org/10.3389/fphys.2018.00629.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Burton GJ, Jauniaux E. What is the placenta? Am J Obstet Gynecol. 2015. https://doi.org/10.1016/j.ajog.2015.07.050.

    Article  PubMed  Google Scholar 

  5. Roberts RM, Green JA, Schulz LC. The evolution of the placenta. Reproduction. 2016. https://doi.org/10.1530/REP-16-0325.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Burton GJ, Fowden AL. The placenta: a multifaceted, transient organ. Philos Trans R Soc B Biol Sci. 2015. https://doi.org/10.1098/rstb.2014.0066.

    Article  Google Scholar 

  7. Eaton BM, Leach L, Firth JA. Permeability of the fetal villous microvasculature in the isolated perfused term human placenta. J Physiol. 1993. https://doi.org/10.1113/jphysiol.1993.sp019588.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Firth JA, Leach L. Not trophoblast alone: a review of the contribution of the fetal microvasculature to transplacental exchange. Placenta. 1996. https://doi.org/10.1016/s0143-4004(96)80001-4.

    Article  PubMed  Google Scholar 

  9. Brett KE, Ferraro ZM, Yockell-Lelievre J, Gruslin A, Adamo KB. Maternal–fetal nutrient transport in pregnancy pathologies: the role of the placenta. Int J Mol Sci. 2014. https://doi.org/10.3390/ijms150916153.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Castillo-Castrejon M, Powell TL. Placental nutrient transport in gestational diabetic pregnancies. Front Endocrinol (Lausanne). 2017. https://doi.org/10.3389/fendo.2017.00306.

    Article  Google Scholar 

  11. Lager S, Powell TL. Regulation of nutrient transport across the placenta. J Pregnancy. 2012. https://doi.org/10.1155/2012/179827.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Kalhan S, Parimi P. Gluconeogenesis in the fetus and neonate. Semin Perinatol. 2000. https://doi.org/10.1053/sp.2000.6360.

    Article  PubMed  Google Scholar 

  13. Kulkarni SR, Kumaran K, Rao SR, Chougule SD, Deokar TM, Bhalerao AJ, et al. Maternal lipids are as important as glucose for fetal growth: findings from the Pune Maternal Nutrition Study. Diabetes Care. 2013. https://doi.org/10.2337/dc12-2445.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Hill JC, Krishnaveni GV, Annamma I, Leary SD, Fall CHD. Glucose tolerance in pregnancy in South India: relationships to neonatal anthropometry. Acta Obstet Gynecol Scand. 2005. https://doi.org/10.1111/j.0001-6349.2005.00670.x.

    Article  PubMed  Google Scholar 

  15. Baumann MU, Deborde S, Illsley NP. Placental glucose transfer and fetal growth. Endocrine. 2002. https://doi.org/10.1385/ENDO:19:1:13.

    Article  PubMed  Google Scholar 

  16. Jones HN, Powell TL, Jansson T. Regulation of placental nutrient transport - a review. Placenta. 2007. https://doi.org/10.1016/j.placenta.2007.05.002.

    Article  PubMed  Google Scholar 

  17. Yajnik CS. The lifecycle effects of nutrition and body size on adult adiposity, diabetes and cardiovascular disease. Obes Rev. 2002. https://doi.org/10.1046/j.1467-789x.2002.00072.x.

    Article  PubMed  Google Scholar 

  18. Yajnik CS, Fall CHD, Coyaji KJ, Hirve SS, Rao S, Barker DJP, Joglekar C, Kellingray S. Neonatal anthropometry: the thin-fat Indian baby. The Pune Maternal Nutrition Study. Int J Obes Relat Metab Disord. 2003; https://doi.org/10.1038/sj.ijo.802219

  19. Wright EM, Loo DDF, Hirayama BA. Biology of human sodium glucose transporters. Physiol Rev. 2011. https://doi.org/10.1152/physrev.00055.2009.

    Article  PubMed  Google Scholar 

  20. Wright EM. Glucose transport families SLC5 and SLC50. Mol Aspects Med. 2013. https://doi.org/10.1016/j.mam.2012.11.002.

    Article  PubMed  Google Scholar 

  21. Jia B, Zhu XF, Pu ZJ, Duan YX, Hao LJ, Zhang J, et al. Integrative view of the diversity and evolution of SWEET and SemiSWEET sugar transporters. Front Plant Sci. 2017. https://doi.org/10.3389/fpls.2017.02178.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Nicholas P, Illsley MUB. Human placental glucose transport in fetoplacental growth and metabolism. Biochim Biophys Acta - Mol Basis Dis. 2020. https://doi.org/10.1016/j.bbadis.2018.12.010.

    Article  Google Scholar 

  23. Pao SS, Paulsen IT, Saier Jr MH. Major facilitator superfamily. Microbiol Mol Biol Rev. 1998; 9529885

  24. Joost H-G, Bell GI, Best JD, Birnbaum MJ, Charron MJ, Chen YT, et al. Nomenclature of the GLUT/SLC2A family of sugar/polyol transport facilitators. Am J Physiol Metab. 2002. https://doi.org/10.1152/ajpendo.00407.2001.

    Article  Google Scholar 

  25. Holman GD. Structure, function and regulation of mammalian glucose transporters of the SLC2 family. Pflugers Arch Eur J Physiol. 2020. https://doi.org/10.1007/s00424-020-02411-3.

    Article  Google Scholar 

  26. Thorens B, Mueckler M. Glucose transporters in the 21st century. Am J Physiol Endocrinol Metab. 2010. https://doi.org/10.1152/ajpendo.00712.2009/20009031.

    Article  PubMed  Google Scholar 

  27. Illsley NP. Glucose transporters in the human placenta. Placenta. 2000. https://doi.org/10.1053/plac.1999.0448.

    Article  PubMed  Google Scholar 

  28. Ohta T. Molecular biology of mammalian glucose transporters. Trends Glycosci Glycotechnol. 1992. https://doi.org/10.4052/tigg.4.99.

    Article  Google Scholar 

  29. Jansson T, Wennergren M, Illsley NP. Glucose transporter protein expression in human placenta throughout gestation and in intrauterine growth retardation. J Clin Endocrinol Metab. 1993. https://doi.org/10.1210/jcem.77.6.8263141.

    Article  PubMed  Google Scholar 

  30. Baumann MU, Schneider H, Malek A, Palta V, Surbek DV, Sager R, et al. Regulation of human trophoblast GLUT1 glucose transporter by insulin-like growth factor I (IGF-I). PLoS ONE. 2014. https://doi.org/10.1371/journal.pone.0106037.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Larque E, Ruiz-Palacios M, Koletzko B. Placental regulation of fetal nutrient supply. Curr Opin Clin Nutr Metab Care. 2013. https://doi.org/10.1097/MCO.0b013e32835e3674.

    Article  PubMed  Google Scholar 

  32. Simpson IA, Dwyer D, Malide D, Moley KH, Travis A, Vannucci SJ. The facilitative glucose transporter GLUT3: 20 years of distinction. Am J Physiol Endocrinol Metab. 2008. https://doi.org/10.1152/ajpendo.90388.2008.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Shepherd PR, Gould GW, Colville CA, McCoid SC, Gibbs EM, Kahn BB. Distribution of GLUT3 glucose transporter protein in human tissues. Biochem Biophys Res Commun. 1992. https://doi.org/10.1016/0006-291x(92)92362-2.

    Article  PubMed  Google Scholar 

  34. Haber RS, Weinstein SP, O’Boyle E, Morgello S. Tissue distribution of the human GLUT3 glucose transporter. Endocrinology. 1993. https://doi.org/10.1210/endo.132.6.8504756.

    Article  PubMed  Google Scholar 

  35. Hauguel-de Mouzon S, Challier JC, Kacemi A, Caüzac M, Malek A, Girard J. The GLUT3 glucose transporter isoform is differentially expressed within human placental cell types. J Clin Endocrinol Metab. 1997. https://doi.org/10.1210/jcem.82.8.4147.

    Article  PubMed  Google Scholar 

  36. Korgun ET, Celik-Ozenci C, Seval Y, Desoye G, Demir R. Do glucose transporters have other roles in addition to placental glucose transport during early pregnancy? Histochem Cell Biol. 2005. https://doi.org/10.1007/s00418-005-0792-3.

    Article  PubMed  Google Scholar 

  37. Ogura K, Sakata M, Okamoto Y, Yasui Y, Tadokoro C, Yoshimoto Y, et al. 8-bromo-cyclicAMP stimulates glucose transporter-1 expression in a human choriocarcinoma cell line. J Endocrinol. 2000. https://doi.org/10.1677/joe.0.1640171.

    Article  PubMed  Google Scholar 

  38. Brown K, Heller DS, Zamudio S, Illsley NP. Glucose transporter 3 (GLUT3) protein expression in human placenta across gestation. Placenta. 2011. https://doi.org/10.1016/j.placenta.2011.09.014.

    Article  PubMed  PubMed Central  Google Scholar 

  39. James-Allan LB, Teal S, Powell TL, Jansson T. Changes in placental nutrient transporter protein expression and activity across gestation in normal and obese women. Reprod Sci. 2020. https://doi.org/10.1007/s43032-020-00173-y.

    Article  PubMed  Google Scholar 

  40. Esterman A, Greco MA, Mitani Y, Finlay TH, Ismail-Beigi F, Dancis J. The effect of hypoxia on human trophoblast in culture: morphology, glucose transport and metabolism. Placenta. 1997. https://doi.org/10.1016/s0143-4004(97)90084-9.

    Article  PubMed  Google Scholar 

  41. Hahn D, Blaschitz A, Korgun ET, Lang I, Desoye G, Skofitsch G, et al. From maternal glucose to fetal glycogen: expression of key regulators in the human placenta. Mol Hum Reprod [Internet]. 2001;7(12):1173–8. https://doi.org/10.1093/molehr/7.12.1173.

    Article  CAS  Google Scholar 

  42. Ferré-Dolcet L, Yeste M, Vendrell M, Rigau T, Rodríguez-Gil JE, Rivera del Álamo MM. Placental and uterine expression of GLUT3, but not GLUT1, is related with serum progesterone levels during the first stages of pregnancy in queens. Theriogenology. 2018; https://doi.org/10.1016/j.theriogenology.2018.08.002

  43. Xing AY, Challier JC, Lepercq J, Caüzac M, Charron MJ, Girard J, et al. Unexpected expression of glucose transporter 4 in villous stromal cells of human placenta. J Clin Endocrinol Metab. 1998. https://doi.org/10.1210/jcem.83.11.5290.

    Article  PubMed  Google Scholar 

  44. Barrosa LF, Yudilevich DL, Jarvis SM, Beaumont N, Baldwin SA. Quantitation and immunolocalization of glucose transporters in the human placenta. Placenta. 1995. https://doi.org/10.1016/0143-4004(95)90031-4.

    Article  Google Scholar 

  45. Ericsson A, Hamark B, Powell TL, Jansson T. Glucose transporter isoform 4 is expressed in the syncytiotrophoblast of first trimester human placenta. Hum Reprod. 2005. https://doi.org/10.1093/humrep/deh596.

    Article  PubMed  Google Scholar 

  46. James-Allan LB, Arbet J, Teal SB, Powell TL, Jansson T. Insulin stimulates GLUT4 trafficking to the syncytiotrophoblast basal plasma membrane in the human placenta. J Clin Endocrinol Metab. 2019. https://doi.org/10.1210/jc.2018-02778.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Carayannopoulos MO, Chi MM, Cui Y, Pingsterhaus JM, McKnight RA, Mueckler M, et al. GLUT8 is a glucose transporter responsible for insulin-stimulated glucose uptake in the blastocyst. Proc Natl Acad Sci U S A. 2000. https://doi.org/10.1073/pnas.97.13.7313.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Pinto AB, Carayannopoulos MO, Hoehn A, Dowd L, Moley KH. Glucose transporter 8 expression and translocation are critical for murine blastocyst survival. Biol Reprod. 2002. https://doi.org/10.1095/biolreprod66.6.1729.

    Article  PubMed  Google Scholar 

  49. Adastra KL, Frolova AI, Chi MM, Cusumano D, Bade M, Carayannopoulos MO, et al. Slc2a8 deficiency in mice results in reproductive and growth impairments. Biol Reprod. 2012. https://doi.org/10.1095/biolreprod.111.097675.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Limesand SW, Regnault TRH, Hay WW. Characterization of glucose transporter 8 (GLUT8) in the ovine placenta of normal and growth restricted fetuses. Placenta. 2004. https://doi.org/10.1016/j.placenta.2003.08.012.

    Article  PubMed  Google Scholar 

  51. Janzen C, Lei MYY, Jeong ISD, Ganguly A, Sullivan P, Paharkova V, et al. Humanin (HN) and glucose transporter 8 (GLUT8) in pregnancies complicated by intrauterine growth restriction. PLoS ONE. 2018. https://doi.org/10.1371/journal.pone.0193583.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Preitner F, Bonny O, Laverrière A, Rotman S, Firsov D, Da Costa A, et al. Glut9 is a major regulator of urate homeostasis and its genetic inactivation induces hyperuricosuria and urate nephropathy. Proc Natl Acad Sci U S A. 2009. https://doi.org/10.1073/pnas.0904411106.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Manolescu AR, Augustin R, Moley K, Cheeseman C. A highly conserved hydrophobic motif in the exofacial vestibule of fructose transporting SLC2A proteins acts as a critical determinant of their substrate selectivity. Mol Membr Biol. 2007. https://doi.org/10.1080/09687680701298143.

    Article  PubMed  Google Scholar 

  54. Augustin R, Carayannopoulos MO, Dowd LO, Phay JE, Moley JF, Moley KH. Identification and characterization of human glucose transporter-like protein-9 (GLUT9): alternative splicing alters trafficking. J Biol Chem. 2004. https://doi.org/10.1074/jbc.M312226200.

    Article  PubMed  Google Scholar 

  55. Bibee KP, Illsley NP, Moley KH. Asymmetric syncytial expression of GLUT9 splice variants in human term placenta and alterations in diabetic pregnancies. Reprod Sci. 2011. https://doi.org/10.1177/1933719110380276.

    Article  PubMed  PubMed Central  Google Scholar 

  56. McVie-Wylie AJ, Lamson DR, Chen YT. Molecular cloning of a novel member of the GLUT family of transporters, SLC2a10 (GLUT10), localized on chromosome 20q13.1: a candidate gene for NIDDM susceptibility. Genomics. 2001; https://doi.org/10.1006/geno.2000.6457

  57. Gude NM, Stevenson JL, Rogers S, Best JD, Kalionis B, Huisman MA, et al. GLUT12 expression in human placenta in first trimester and term. Placenta. 2003. https://doi.org/10.1053/plac.2002.0925.

    Article  PubMed  Google Scholar 

  58. Gude NM, Stevenson JL, Murthi P, Rogers S, Best JD, Kalionis B, et al. Expression of GLUT12 in the fetal membranes of the human placenta. Placenta. 2005. https://doi.org/10.1016/j.placenta.2004.04.006.

    Article  PubMed  Google Scholar 

  59. Stanirowski PJ, Lipa M, Bomba-Opoń D, Wielgoś M. Expression of placental glucose transporter proteins in pregnancies complicated by fetal growth disorders. Adv Protein Chem Struct Biol. 2021. https://doi.org/10.1016/bs.apcsb.2019.12.003.

    Article  PubMed  Google Scholar 

  60. Li H, Gu Y, Zhang Y, Lucas MJ, Wang Y. High glucose levels down-regulate glucose transporter expression that correlates with increased oxidative stress in placental trophoblast cells in vitro. J Soc Gynecol Investig. 2004. https://doi.org/10.1016/j.jsgi.2003.08.002.

    Article  PubMed  Google Scholar 

  61. Jones HN, Crombleholme T, Habli M. Adenoviral-mediated placental gene transfer of IGF-1 corrects placental insufficiency via enhanced placental glucose transport mechanisms. PLoS ONE. 2013. https://doi.org/10.1371/journal.pone.0074632.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Mateos RM, Jiménez G, Álvarez-Gil C, Visiedo F, Rivera-Rodríguez F, Santos-Rosendo C, et al. Excess hydrocortisone hampers placental nutrient uptake disrupting cellular metabolism. BioMed Res Int. 2018. https://doi.org/10.1155/2018/5106174.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Kipmen-Korgun D, Ozmen A, Unek G, Simsek M, Demir R, Korgun ET. Triamcinolone up-regulates GLUT 1 and GLUT 3 expression in cultured human placental endothelial cells. Cell Biochem Funct. 2012. https://doi.org/10.1002/cbf.1817.

    Article  PubMed  Google Scholar 

  64. Gao L, Lv C, Xu C, Li Y, Cui X, Gu H, et al. Differential regulation of glucose transporters mediated by CRH receptor type 1 and type 2 in human placental trophoblasts endocrinology. 2012; https://doi.org/10.1210/en.2011-1673

  65. Duval F, Santos ED, Poidatz D, Sérazin V, Gronier H, Vialard F, et al. Adiponectin inhibits nutrient transporters and promotes apoptosis in human villous cytotrophoblasts: involvement in the control of fetal growth. Biol Reprod. 2016. https://doi.org/10.1095/biolreprod.115.134544.

    Article  PubMed  Google Scholar 

  66. Balachandiran M, Bobby Z, Dorairajan G, Gladwin V, Vinayagam V, Packirisamy RM. Decreased maternal serum adiponectin and increased insulin-like growth factor-1 levels along with increased placental glucose transporter-1 expression in gestational diabetes mellitus: Possible role in fetal overgrowth. Placenta. 2021. https://doi.org/10.1016/j.placenta.2020.11.008.

    Article  PubMed  Google Scholar 

  67. Lager S, Ramirez VI, Acosta O, Meireles C, Miller E, Gaccioli F, et al. Docosahexaenoic acid supplementation in pregnancy modulates placental cellular signaling and nutrient transport capacity in obese women. J Clin Endocrinol Metab. 2017. https://doi.org/10.1210/jc.2017-01384.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Michelsen TM, Holme AM, Holm MB, Roland MC, Haugen G, Powell TL, et al. Uteroplacental glucose uptake and fetal glucose consumption: a quantitative study in human pregnancies. J Clin Endocrinol Metab. 2019. https://doi.org/10.1210/jc.2018-01154.

    Article  PubMed  Google Scholar 

  69. Kramer AC, Steinhauser CB, Gao H, Seo H, McLendon BA, Burghardt RC, et al. Steroids regulate SLC2A1 and SLC2A3 to deliver glucose into trophectoderm for metabolism via glycolysis. Endocrinology. 2020. https://doi.org/10.1210/endocr/bqaa098.

    Article  PubMed  Google Scholar 

  70. Tung E, Roberts CT, Heinemann GK, De Blasio MJ, Kind KL, van Wettere WH, et al. Increased placental nutrient transporter expression at midgestation after maternal growth hormone treatment in pigs: a placental mechanism for increased fetal growth. Biol Reprod. 2012. https://doi.org/10.1095/biolreprod.112.100222.

    Article  PubMed  Google Scholar 

  71. Halloran KM, Hoskins EC, Stenhouse C, Moses RM, Dunlap KA, Satterfield MC, et al. Pre-implantation exogenous progesterone and pregnancy in sheep. II. Effects on fetal-placental development and nutrient transporters in late pregnancy. J Anim Sci Biotechnol. 2021; https://doi.org/10.1186/s40104-021-00567-1

  72. Aye ILMH, Rosario FJ, Powell TL, Jansson T. Adiponectin supplementation in pregnant mice prevents the adverse effects of maternal obesity on placental function and fetal growth. Proc Natl Acad Sci U S A. 2015. https://doi.org/10.1073/pnas.1515484112.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Duval F, Dos Santos E, Maury B, Serazin V, Fathallah K, Vialard F, et al. Adiponectin regulates glycogen metabolism at the human fetal–maternal interface. J Mol Endocrinol. 2018. https://doi.org/10.1530/JME-18-0013.

    Article  PubMed  Google Scholar 

  74. Mayeur S, Wattez JS, Lukaszewski MA, Lecoutre S, Butruille L, Drougard A, et al. Apelin controls fetal and neonatal glucose homeostasis and is altered by maternal undernutrition. Diabetes. 2016. https://doi.org/10.2337/db15-0228.

    Article  PubMed  Google Scholar 

  75. Liu N, Dai Z, Zhang Y, Chen J, Yang Y, Wu G, et al. Maternal L-proline supplementation enhances fetal survival, placental development, and nutrient transport in mice †. Biol Reprod. 2019. https://doi.org/10.1093/biolre/ioy240.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Shrestha N, Holland OJ, Kent NL, Perkins AV, McAinch AJ, Cuffe JSM, et al. Maternal high linoleic acid alters placental fatty acid composition. Nutrients. 2020. https://doi.org/10.3390/nu12082183.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Stanirowski PJ, Szukiewicz D, Pazura-Turowska M, Sawicki W, Cendrowski K. Placental Expression of Glucose Transporter Proteins in Pregnancies Complicated by Gestational and Pregestational Diabetes Mellitus. Can J Diabetes. 2018. https://doi.org/10.1016/j.jcjd.2017.04.008.

    Article  PubMed  Google Scholar 

  78. Devaskar SU, Devaskar UP, Schroeder RE, deMello D, Fiedorek FT, Mueckler M. Expression of genes involved in placental glucose uptake and transport in the nonobese diabetic mouse pregnancy. Am J Obstet Gynecol. 1994. https://doi.org/10.1016/0002-9378(94)90154-6.

    Article  PubMed  Google Scholar 

  79. Boileau P, Mrejen C, Girard J, Hauguel-De MS. Overexpression of GLUT3 placental glucose transporter in diabetic rats. J Clin Invest. 1995. https://doi.org/10.1172/JCI118036.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Gaither K, Quraishi AN, Illsley NP. Diabetes alters the expression and activity of the human placental GLUT1 glucose transporter. J Clin Endocrinol Metab. 1999. https://doi.org/10.1210/jcem.84.2.5438.

    Article  PubMed  Google Scholar 

  81. Jansson T, Wennergren M, Powell TL. Placental glucose transport and GLUT 1 expression in insulin-dependent diabetes. Am J Obstet Gynecol. 1999. https://doi.org/10.1016/s0002-9378(99)70169-9.

    Article  PubMed  Google Scholar 

  82. Borges MH, Pullockaran J, Catalano PM, Baumann MU, Zamudio S, Illsley NP. Human placental GLUT1 glucose transporter expression and the fetal insulin-like growth factor axis in pregnancies complicated by diabetes. Biochim Biophys Acta - Mol Basis Dis. 2019. https://doi.org/10.1016/j.bbadis.2019.06.002.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Jansson T, Ekstrand Y, Wennergren M, Powell TL. Placental glucose transport in gestational diabetes mellitus. Am J Obstet Gynecol. 2001;184(2):111–6. https://doi.org/10.1067/mob.2001.108075.

    Article  CAS  PubMed  Google Scholar 

  84. Colomiere M, Permezel M, Riley C, Desoye G, Lappas M. Defective insulin signaling in placenta from pregnancies complicated by gestational diabetes mellitus. Eur J Endocrinol. 2009. https://doi.org/10.1530/EJE-09-0031.

    Article  PubMed  Google Scholar 

  85. Zhang B, Jin Z, Sun L, Zheng Y, Jiang J, Feng C, et al. Expression and correlation of sex hormone-binding globulin and insulin signal transduction and glucose transporter proteins in gestational diabetes mellitus placental tissue. Diabetes Res Clin Pract. 2016. https://doi.org/10.1016/j.diabres.2016.07.003.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Szukiewicz D, Abdalla N, Cendrowski K. Impact of pre-gestational and gestational diabetes mellitus on the expression of glucose transporters GLUT-1, GLUT-4 and GLUT-9 in human term placenta. Endocrine. 2017. https://doi.org/10.1007/s12020-016-1202-4.

    Article  PubMed  Google Scholar 

  87. Korgun ET, Acar N, Sati L, Kipmen-Korgun D, Ozen A, Unek G, et al. Expression of glucocorticoid receptor and glucose transporter-1 during placental development in the diabetic rat. Folia Histochem Cytobiol. 2011. https://doi.org/10.5603/fhc.2011.0045.

    Article  PubMed  Google Scholar 

  88. Kappen C, Kruger C, Jones S, Herion NJ, Salbaum JM. Maternal diet modulates placental nutrient transporter gene expression in a mouse model of diabetic pregnancy. PLoS ONE. 2019. https://doi.org/10.1371/journal.pone.0224754.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Díaz P, Dimasuay KG, Koele-Schmidt L, Jang B, Barbour LA, Jansson T, et al. Glyburide treatment in gestational diabetes is associated with increased placental glucose transporter 1 expression and higher birth weight. Placenta. 2017. https://doi.org/10.1016/j.placenta.2017.05.016.

    Article  PubMed  Google Scholar 

  90. Yao G, Zhang Y, Wang D, Yang R, Sang H, Han L, et al. GDM-induced macrosomia is reversed by Cav-1 via AMPK-mediated fatty acid transport and GLUT1-mediated glucose transport in placenta. PLoS ONE. 2017. https://doi.org/10.1371/journal.pone.0170490.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Stanirowski PJ, Szukiewicz D, Pyzlak M, Abdalla N, Sawicki W, Cendrowski K. Analysis of correlations between the placental expression of glucose transporters GLUT-1, GLUT-4 and GLUT-9 and selected maternal and fetal parameters in pregnancies complicated by diabetes mellitus. J Matern Neonatal Med. 2019; https://doi.org/10.1080/14767058.2017.1387897

  92. Higgins L, Greenwood SL, Wareing M, Sibley CP, Mills TA. Obesity and the placenta: a consideration of nutrient exchange mechanisms in relation to aberrant fetal growth. Placenta. 2011. https://doi.org/10.1016/j.placenta.2010.09.019.

    Article  PubMed  Google Scholar 

  93. Stang J, Huffman LG. Position of the academy of nutrition and dietetics: obesity, reproduction, and pregnancy outcomes. J Acad Nutr Diet. 2016. https://doi.org/10.1016/j.jand.2016.01.008.

    Article  PubMed  Google Scholar 

  94. Jones HN, Woollett LA, Barbour N, Prasad PD, Powell TL, Jansson T. High-fat diet before and during pregnancy causes marked up-regulation of placental nutrient transport and fetal overgrowth in C57/BL6 mice. FASEB J. 2009. https://doi.org/10.1096/fj.08-116889.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Rosario FJ, Kanai Y, Powell TL, Jansson T. Increased placental nutrient transport in a novel mouse model of maternal obesity with fetal overgrowth. Obesity (Silver Spring). 2015. https://doi.org/10.1002/oby.21165.

    Article  Google Scholar 

  96. Sferruzzi-Perri AN, Vaughan OR, Haro M, Cooper WN, Musial B, Charalambous M, et al. An obesogenic diet during mouse pregnancy modifies maternal nutrient partitioning and the fetal growth trajectory. FASEB J. 2013. https://doi.org/10.1096/fj.13-234823.

    Article  PubMed  Google Scholar 

  97. Reynolds CM, Vickers MH, Harrison CJ, Segovia SA, Gray C. Maternal high fat and/or salt consumption induces sex-specific inflammatory and nutrient transport in the rat placenta. Physiol Rep. 2015; https://doi.org/10.14814/phy2.12399

  98. Nam J, Greenwald E, Jack-Roberts C, Ajeeb TT, Malysheva OV, Caudill MA, et al. Choline prevents fetal overgrowth and normalizes placental fatty acid and glucose metabolism in a mouse model of maternal obesity. J Nutr Biochem. 2017. https://doi.org/10.1016/j.jnutbio.2017.08.004.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Acosta O, Ramirez VI, Lager S, Gaccioli F, Dudley DJ, Powell TL, et al. Increased glucose and placental GLUT-1 in large infants of obese nondiabetic mothers. Am J Obstet Gynecol. 2015. https://doi.org/10.1016/j.ajog.2014.08.009.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Ganguly A, Devaskar SU. High-fat diet affects pregestational adiposity and glucose tolerance perturbing gestational placental macronutrient transporters culminating in an obese offspring in wild-type and glucose transporter isoform 3 heterozygous null mice. J Nutr Biochem. 2018. https://doi.org/10.1016/j.jnutbio.2018.09.001.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Appel S, Grothe J, Storck S, Janoschek R, Bae-Gartz I, Wohlfarth M, et al. A potential role for GSK3b in glucose-driven intrauterine catch-up growth in maternal obesity. Endocrinology. 2019. https://doi.org/10.1210/en.2018-00899.

    Article  PubMed  Google Scholar 

  102. Qiao L, Wattez JS, Lim L, Rozance PJ, Hay WW, Shao J. Prolonged prepregnant maternal high-fat feeding reduces fetal and neonatal blood glucose concentrations by enhancing fetal β-cell development in C57BL/6 mice. Diabetes. 2019. https://doi.org/10.2337/db18-1308.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Wang Y, Bucher M, Myatt L. Use of glucose, glutamine, and fatty acids for trophoblast respiration in lean women, women with obesity, and women with gestational diabetes. J Clin Endocrinol Metab. 2019. https://doi.org/10.1210/jc.2019-00166.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Winterhager E, Gellhaus A. Transplacental nutrient transport mechanisms of intrauterine growth restriction in rodent models and humans. Front Physiol. 2017. https://doi.org/10.3389/fphys.2017.00951.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Janzen C, Lei MYY, Cho J, Sullivan P, Shin B-C, Devaskar SU. Placental glucose transporter 3 (GLUT3) is up-regulated in human pregnancies complicated by late-onset intrauterine growth restriction. Placenta. 2013. https://doi.org/10.1016/j.placenta.2013.08.010.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Jansson T, Ylvén K, Wennergren M, Powell TL. Glucose transport and system A activity in syncytiotrophoblast microvillous and basal plasma membranes in intrauterine growth restriction. Placenta. 2002. https://doi.org/10.1053/plac.2002.0826.

    Article  PubMed  Google Scholar 

  107. Langdown ML, Sugden MC. Enhanced placental GLUT1 and GLUT3 expression in dexamethasone-induced fetal growth retardation. Mol Cell Endocrinol. 2001. https://doi.org/10.1016/s0303-7207(01)00629-3.

    Article  PubMed  Google Scholar 

  108. Nüsken E, Gellhaus A, Kühnel E, Swoboda I, Wohlfarth M, Vohlen C, et al. Increased rat placental fatty acid, but decreased amino acid and glucose transporters potentially modify intrauterine programming. J Cell Biochem. 2016. https://doi.org/10.1002/jcb.25450.

    Article  PubMed  Google Scholar 

  109. Gibbins KJ, Gibson-Corley KN, Brown AS, Wieben M, Law RC, Fung CM. Effects of excess thromboxane A2 on placental development and nutrient transporters in a Mus musculus model of fetal growth restriction. Biol Reprod. 2018. https://doi.org/10.1093/biolre/ioy006.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Cao X, Hua X, Wang X, Chen L. Exposure of pregnant mice to triclosan impairs placental development and nutrient transport. Sci Rep. 2017. https://doi.org/10.1038/srep44803.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Kainulainen H, Järvinen T, Heinonen PK. Placental glucose transporters in fetal intrauterine growth retardation and macrosomia. Gynecol Obstet Invest. 1997. https://doi.org/10.1159/000291493.

    Article  PubMed  Google Scholar 

  112. Chandrasiri UP, Chua CLL, Umbers AJ, Chaluluka E, Glazier JD, Rogerson SJ, et al. Insight into the pathogenesis of fetal growth restriction in placental malaria: decreased placental glucose transporter isoform 1 expression. J Infect Dis. 2014. https://doi.org/10.1093/infdis/jit803.

    Article  PubMed  Google Scholar 

  113. Lüscher BP, Marini C, Joerger-Messerli MS, Huang X, Hediger MA, Albrecht C, et al. Placental glucose transporter (GLUT)-1 is down-regulated in preeclampsia. Placenta. 2017. https://doi.org/10.1016/j.placenta.2017.04.023.

    Article  PubMed  Google Scholar 

  114. Yajnik CS, Lubree HG, Rege SS, Naik SS, Deshpande JA, Deshpande SS, et al. Adiposity and hyperinsulinemia in Indians are present at birth. J Clin Endocrinol Metab. 2002. https://doi.org/10.1210/jc.2002-020434.

    Article  PubMed  Google Scholar 

  115. Yajnik CS, Yudkin JS. The Y-Y paradox. Lancet. 2004. https://doi.org/10.1016/S0140-6736(03)15269-5.

    Article  PubMed  Google Scholar 

  116. Yajnik CS. Size and body composition at birth and risk of type-2 diabetes. Nestle Nutr Workshop Ser Pediatr Program. 2005. https://doi.org/10.1159/000082601.

    Article  PubMed  Google Scholar 

  117. Krishnaveni GV, Hill JC, Veena SR, Leary SD, Saperia J, Chachyamma KJ, Karat SC, Fall CH. Truncal adiposity is present at birth and in early childhood in South Indian children. Indian Pediatr. 2005;42(6):527–38.

    CAS  PubMed  Google Scholar 

  118. Lakshmi S, Metcalf B, Joglekar C, Yajnik CS, Fall CH, Wilkin TJ. Differences in body composition and metabolic status between white U.K. and Asian Indian children (EarlyBird 24 and the Pune Maternal Nutrition Study). Pediatr Obes. 2012; https://doi.org/10.1111/j.2047-6310.2012.00063.x

  119. Anand SS, Gupta MK, Schulze KM, Desai D, Abdalla N, Wahi G, et al. What accounts for ethnic differences in newborn skinfold thickness comparing South Asians and White Caucasians? Findings from the START and FAMILY Birth Cohorts. Int J Obes (Lond). 2016. https://doi.org/10.1038/ijo.2015.171.

    Article  Google Scholar 

  120. Wells JC, Pomeroy E, Walimbe SR, Popkin BM, Yajnik CS. The elevated susceptibility to diabetes in India: an evolutionary perspective. Front Public Health. 2016. https://doi.org/10.3389/fpubh.2016.00145.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Author AS was the recipient of “Research Associate” from Indian Council of Medical Research, Government of India.

Funding

The authors received funding from the Department of Biotechnology (DBT), India.

Author information

Authors and Affiliations

Authors

Contributions

Nikita P. Joshi, Aditi R. Mane, Akriti S. Sahay, Deepali P. Sundrani, Sadhana R. Joshi, and Chittaranjan S. Yajnik contributed to writing the manuscript.

Corresponding author

Correspondence to Sadhana R. Joshi.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joshi, N.P., Mane, A.R., Sahay, A.S. et al. Role of Placental Glucose Transporters in Determining Fetal Growth. Reprod. Sci. 29, 2744–2759 (2022). https://doi.org/10.1007/s43032-021-00699-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43032-021-00699-9

Keywords

Navigation