Skip to main content
Log in

Changes in Placental Nutrient Transporter Protein Expression and Activity Across Gestation in Normal and Obese Women

  • Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Fetal growth and development are dependent on placental nutrient transport. The syncytiotrophoblast (ST) and its two polarized plasma membranes, the maternal-facing microvillous membrane (MVM) and fetal-facing basal membrane (BM), represent the primary barrier in the human placenta, controlling transplacental transfer of small solutes. MVM and BM nutrient transporter expression and activity are increased in obese mothers delivering large babies. However, placental nutrient transporter expression and activity in early gestation in normal and obese women are largely unknown. Placentas from normal BMI and obese women at 6–24 weeks of gestation, and term placentas from normal BMI women, were collected and ST plasma membranes isolated. The activity and protein expression of amino acid, glucose, and fatty acid transporters was assessed. No significant differences were observed in placental nutrient transporter protein expression between normal BMI and obese women in early pregnancy. In the MVM, system A amino acid activity (p = 0.02), SNAT2 (p < 0.0001), SNAT4 (p < 0.001), and GLUT1 (p = 0.01) protein expression were higher at term compared with early gestation. In contrast, MVM system L activity (p = 0.001), FATP4 (p = 0.03), and FATP6 (p = 0.009) protein expression were lower at term compared with early pregnancy. In the BM, there was no change in system L activity across gestation; however, BM FATP6 (p = 0.002) protein expression was lower at term compared with early pregnancy. These results suggest that placental transport of amino acids, glucose, and fatty acids are subjected to coordinated regulation across gestation to meet a fetal nutrient demand that changes with advancing pregnancy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Jansson T, Ylven K, Wennergren M, et al. Glucose transport and system A activity in syncytiotrophoblast microvillous and basal plasma membranes in intrauterine growth restriction. Placenta. 2002;23:392–9.

    CAS  PubMed  Google Scholar 

  2. Hayward CE, Lean S, Sibley CP, et al. Placental adaptation: what can we learn from Birthweight:placental weight ratio? Front Physiol. 2016;7:28.

    PubMed  PubMed Central  Google Scholar 

  3. Jansson N, Rosario FJ, Gaccioli F, et al. Activation of placental mTOR signaling and amino acid transporters in obese women giving birth to large babies. J Clin Endocrinol Metab. 2013;98:105–13.

    CAS  PubMed  Google Scholar 

  4. Acosta O, Ramirez VI, Lager S, et al. Increased glucose and placental GLUT-1 in large infants of obese nondiabetic mothers. Am J Obstet Gynecol. 2015;212:227 e221–7.

    Google Scholar 

  5. Rosario FJ, Jansson N, Kanai Y, Prasad PD, Powell TL, Jansson T. Maternal protein restriction in the rat inhibits placental insulin, mTOR, and STAT3 signaling and down-regulates placental amino acid transporters. Endocrinology. 2011;152:1119–29.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Jansson N, Pettersson J, Haafiz A, Ericsson A, Palmberg I, Tranberg M, et al. Down-regulation of placental transport of amino acids precedes the development of intrauterine growth restriction in rats fed a low protein diet. J Physiol. 2006;576:935–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Kavitha JV, Rosario FJ, Nijland MJ, McDonald T, Wu G, Kanai Y, et al. Down-regulation of placental mTOR, insulin/IGF-I signaling, and nutrient transporters in response to maternal nutrient restriction in the baboon. FASEB J. 2014;28:1294–305.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Pantham P, Rosario FJ, Weintraub S, et al. Down-regulation of placental transport of amino acids precedes the development of intrauterine growth restriction in maternal nutrient restricted baboons. Biol Reprod 2016;In Press.

  9. Aye IL, Rosario FJ, Powell TL, et al. Adiponectin supplementation in pregnant mice prevents the adverse effects of maternal obesity on placental function and fetal growth. Proc Natl Acad Sci U S A. 2015;112:12858–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Rosario FJ, Kanai Y, Powell TL, et al. Increased placental nutrient transport in a novel mouse model of maternal obesity with fetal overgrowth. Obesity (Silver Spring, Md). 2015;23:1663–70.

    CAS  Google Scholar 

  11. Jansson T, Wennergren M, Illsley NP. Glucose transporter protein expression in human placenta throughout gestation and in intrauterine growth retardation. J Clin Endocrinol Metab. 1993;77:1554–62.

    CAS  PubMed  Google Scholar 

  12. Desforges M, Sibley CP. Placental nutrient supply and fetal growth. Int J Dev Biol. 2010;54:377–90.

    CAS  PubMed  Google Scholar 

  13. Jansson T, Wennergren M, Illsley NP. Glucose transporter protein expression in human placenta throughout gestation and in intrauterine growth retardation. J Clin Endocrinol Metab. 1993;77:1554–62.

    CAS  PubMed  Google Scholar 

  14. Ericsson A, Hamark B, Powell TL, Jansson T. Glucose transporter isoform 4 is expressed in the syncytiotrophoblast of first trimester human placenta. Hum Reprod. 2005;20:521–30.

    CAS  PubMed  Google Scholar 

  15. Brown K, Heller DS, Zamudio S, Illsley NP. Glucose transporter 3 (GLUT3) protein expression in human placenta across gestation. Placenta. 2011;32:1041–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. James-Allan LB, Arbet J, Teal SB, et al. Insulin stimulates GLUT4 trafficking to the syncytiotrophoblast basal plasma membrane in the human placenta. J Clin Endocrinol Metab. 2019.

  17. Desforges M, Lacey HA, Glazier JD, Greenwood SL, Mynett KJ, Speake PF, et al. SNAT4 isoform of system A amino acid transporter is expressed in human placenta. Am J Phys Cell Phys. 2006;290:C305–12.

    CAS  Google Scholar 

  18. Desforges M, Mynett KJ, Jones RL, Greenwood SL, Westwood M, Sibley CP, et al. The SNAT4 isoform of the system A amino acid transporter is functional in human placental microvillous plasma membrane. J Physiol. 2009;587:61–72.

    CAS  PubMed  Google Scholar 

  19. Desforges M, Greenwood SL, Glazier JD, Westwood M, Sibley CP. The contribution of SNAT1 to system A amino acid transporter activity in human placental trophoblast. Biochem Biophys Res Commun. 2010;398:130–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Gaccioli F, Aye IL, Roos S, et al. Expression and functional characterisation of system L amino acid transporters in the human term placenta. Reprod Biol Endocrinol. 2015;13:57.

    PubMed  PubMed Central  Google Scholar 

  21. Kazantzis M, Stahl A. Fatty acid transport proteins, implications in physiology and disease. Biochim Biophys Acta. 1821;2012:852–7.

    Google Scholar 

  22. Dube E, Gravel A, Martin C, et al. Modulation of fatty acid transport and metabolism by maternal obesity in the human full-term placenta. Biol Reprod. 2012;87(14):11–1.

  23. Campell FM, Gordon MJ, Dutta-Roy AK. Placental membrane fatty acid-binding protein preferentially binds arachidonic and docosahexaenoic acids. Life Sci. 1998;63:235–40.

    Google Scholar 

  24. Duttaroy AK. Transport of fatty acids across the human placenta: a review. Prog Lipid Res. 2009;48:52–61.

    CAS  PubMed  Google Scholar 

  25. Lager S, Ramirez VI, Gaccioli F, Jang B, Jansson T, Powell TL. Protein expression of fatty acid transporter 2 is polarized to the trophoblast basal plasma membrane and increased in placentas from overweight/obese women. Placenta. 2016;40:60–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Larque E, Demmelmair H, Klingler M, et al. Expression pattern of fatty acid transport protein-1 (FATP-1), FATP-4 and heart-fatty acid binding protein (H-FABP) genes in human term placenta. Early Hum Dev. 2006;82:697–701.

    CAS  PubMed  Google Scholar 

  27. Ferchaud-Roucher V, Kramer A, Silva E, et al. A potential role for lysophosphatidylcholine in the delivery of long chain polyunsaturated fatty acids to the fetal circulation. Biochim Biophys Acta Mol Cell Biol Lipids. 1864;2019:394–402.

    Google Scholar 

  28. Nguyen LN, Ma D, Shui G, et al. Mfsd2a is a transporter for the essential omega-3 fatty acid docosahexaenoic acid. Nature. 2014;509:503.

    CAS  PubMed  Google Scholar 

  29. Baeten JM, Bukusi EA, Lambe M. Pregnancy complications and outcomes among overweight and obese nulliparous women. Am J Public Health. 2001;91:436–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Ehrenberg HM, Durnwald CP, Catalano P, Mercer BM. The influence of obesity and diabetes on the risk of cesarean delivery. Am J Obstet Gynecol. 2004;191:969–74.

    CAS  PubMed  Google Scholar 

  31. Boney CM, Verma A, Tucker R, Vohr BR. Metabolic syndrome in childhood: association with birth weight, maternal obesity, and gestational diabetes mellitus. Pediatrics. 2005;115:e290–6.

    PubMed  Google Scholar 

  32. Cnattingius S, Villamor E, Lagerros YT, et al. High birth weight and obesity–a vicious circle across generations. Int J Obes (2005) 2012;36:1320–1324.

  33. Lawlor DA, Smith GD, O'Callaghan M, Alati R, Mamun AA, Williams GM, et al. Epidemiologic evidence for the fetal overnutrition hypothesis: findings from the mater-university study of pregnancy and its outcomes. Am J Epidemiol. 2007;165:418–24.

    PubMed  Google Scholar 

  34. Jansson T, Powell TL. Role of placental nutrient sensing in developmental programming. Clin Obstet Gynecol. 2013;56:591–601.

    PubMed  PubMed Central  Google Scholar 

  35. Illsley NP, Wang ZQ, Gray A, Sellers MC, Jacobs MM. Simultaneous preparation of paired, syncytial, microvillous and basal membranes from human placenta. Biochim Biophys Acta. 1990;1029:218–26.

    CAS  PubMed  Google Scholar 

  36. Bowers GN Jr, McComb RB. A continuous spectrophotometric method for measuring the activity of serum alkaline phosphatase. Clin Chem. 1966;12:70–89.

    CAS  PubMed  Google Scholar 

  37. Oh SY, Hwang JR, Lee Y, Choi SJ, Kim JS, Kim JH, et al. Isolation of basal membrane proteins from BeWo cells and their expression in placentas from fetal growth-restricted pregnancies. Placenta. 2016;39:24–32.

    CAS  PubMed  Google Scholar 

  38. Ling R, Bridges CC, Sugawara M, Fujita T, Leibach FH, Prasad PD, et al. Involvement of transporter recruitment as well as gene expression in the substrate-induced adaptive regulation of amino acid transport system A. Biochim Biophys Acta. 2001;1512:15–21.

    CAS  PubMed  Google Scholar 

  39. Lanoix D, St-Pierre J, Lacasse AA, Viau M, Lafond J, Vaillancourt C. Stability of reference proteins in human placenta: general protein stains are the benchmark. Placenta. 2012;33:151–6.

    CAS  PubMed  Google Scholar 

  40. Jansson T, Ekstrand Y, Bjorn C, et al. Alterations in the activity of placental amino acid transporters in pregnancies complicated by diabetes. Diabetes. 2002;51:2214–9.

    CAS  PubMed  Google Scholar 

  41. Rosario FJ, Schumacher MA, Jiang J, et al. Chronic maternal infusion of full-length adiponectin in pregnant mice down-regulates placental amino acid transporter activity and expression and decreases fetal growth. J Physiol. 2012;590:1495–509.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Mahendran D, Byrne S, Donnai P, D'Souza SW, Glazier JD, Jones CJ, et al. Na+ transport, H+ concentration gradient dissipation, and system A amino acid transporter activity in purified microvillous plasma membrane isolated from first-trimester human placenta: comparison with the term microvillous membrane. Am J Obstet Gynecol. 1994;171:1534–40.

    CAS  PubMed  Google Scholar 

  43. Hoeltzli SD, Smith CH. Alanine transport systems in isolated basal plasma membrane of human placenta. Am J Phys. 1989;256:C630–7.

    CAS  Google Scholar 

  44. Desforges M, Greenwood SL, Glazier JD, et al. The contribution of SNAT1 to system A amino acid transporter activity in human placental trophoblast. Biochem Biophys Res Commun. 2010;398:130–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Takahashi Y, Nishimura T, Maruyama T, Tomi M, Nakashima E. Contributions of system A subtypes to alpha-methylaminoisobutyric acid uptake by placental microvillous membranes of human and rat. Amino Acids. 2017;49:795–803.

    CAS  PubMed  Google Scholar 

  46. Hatanaka T, Huang W, Wang H, Sugawara M, Prasad PD, Leibach FH, et al. Primary structure, functional characteristics and tissue expression pattern of human ATA2, a subtype of amino acid transport system A. Biochim Biophys Acta. 2000;1467:1–6.

    CAS  PubMed  Google Scholar 

  47. Mando C, Tabano S, Pileri P, et al. SNAT2 expression and regulation in human growth-restricted placentas. Pediatr Res. 2013;74:104–10.

    CAS  PubMed  Google Scholar 

  48. Chen Y-Y, Rosario Fredrick J, Shehab Majida A, et al. Increased ubiquitination and reduced plasma membrane trafficking of placental amino acid transporter SNAT-2 in human IUGR. Clin Sci. 2015;129:1131–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Kudo Y, Boyd CA. Characterisation of L-tryptophan transporters in human placenta: a comparison of brush border and basal membrane vesicles. J Physiol. 2001;531:405–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Okamoto Y, Sakata M, Ogura K, Yamamoto T, Yamaguchi M, Tasaka K, et al. Expression and regulation of 4F2hc and hLAT1 in human trophoblasts. Am J Physiol Cell Physiol. 2002;282:C196–204.

    CAS  PubMed  Google Scholar 

  51. Barros LF, Yudilevich DL, Jarvis SM, Beaumont N, Baldwin SA. Quantitation and immunolocalization of glucose transporters in the human placenta. Placenta. 1995;16:623–33.

    CAS  PubMed  Google Scholar 

  52. Hauguel-de Mouzon S, Leturque A, Alsat E, Loizeau M, Evain-Brion D, Girard J. Developmental expression of Glut1 glucose transporter and c-fos genes in human placental cells. Placenta. 1994;15:35–46.

    CAS  PubMed  Google Scholar 

  53. Ganguly A, McKnight RA, Raychaudhuri S, et al. Glucose transporter isoform-3 mutations cause early pregnancy loss and fetal growth restriction. Am J Physiol Endocrinol Metab. 2007;292:E1241–55.

    CAS  PubMed  Google Scholar 

  54. Campbell FM, Bush PG, Veerkamp JH, Dutta-Roy AK. Detection and cellular localization of plasma membrane-associated and cytoplasmic fatty acid-binding proteins in human placenta. Placenta. 1998;19:409–15.

    CAS  PubMed  Google Scholar 

  55. Mishima T, Miner JH, Morizane M, et al. The expression and function of fatty acid transport protein-2 and -4 in the murine placenta. PLoS One. 2011;6:e25865.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Chassen SS, Ferchaud-Roucher V, Gupta MB, et al. Alterations in placental long chain polyunsaturated fatty acid metabolism in human intrauterine growth restriction. Clin Sci (Lond). 2018;132:595–607.

    CAS  Google Scholar 

  57. Larque E, Krauss-Etschmann S, Campoy C, et al. Docosahexaenoic acid supply in pregnancy affects placental expression of fatty acid transport proteins. Am J Clin Nutr. 2006;84:853–61.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura B. James-Allan.

Ethics declarations

Informed written consent was obtained from all participants for collection of placental tissue and for use of their protected health information, under protocols approved by the Institutional Review Board at University of Colorado, Anschutz Medical Campus (COMIRB 14-1073 and 06-1098).

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(DOCX 166 kb)

ESM 2

(DOCX 128 kb)

ESM 3

(DOCX 58 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

James-Allan, L.B., Teal, S., Powell, T.L. et al. Changes in Placental Nutrient Transporter Protein Expression and Activity Across Gestation in Normal and Obese Women. Reprod. Sci. 27, 1758–1769 (2020). https://doi.org/10.1007/s43032-020-00173-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43032-020-00173-y

Keywords

Navigation