Skip to main content
Log in

Assembly of Cytoplasmic Stress Granules in Placentas in Women with Preeclampsia

  • Pregnancy: Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Inflammation is a well-recognized factor associated with preeclampsia (PE). Stress granules (SGs) have been shown to play an important role in regulating inflammation and immune responses. However, whether SGs are involved in the pathogenesis of PE has not been studied. Here, we evaluated the expression of SG components in placenta of pregnancies with PE. Placental samples or serum were collected from PE patients (n = 31) or healthy age-matched pregnancy (n = 17). mRNA expressions of SG-associated genes in placenta from PE or normal pregnancies were detected by real-time quantitative PCR, and protein expressions of HuR and G3BP were detected using western blot. Immunofluorescence staining was performed to evaluate SG components expression in placentas or 10% serum treated HTR-8/Svneo cells using antibodies against HuR and G3BP. Our study showed higher levels of elavl1, lsm2, lsm4, and ago1 mRNA expression and SG marker proteins expression in placental homogenates of PE patients. HuR/G3BP-positive SG structure was further observed in placental villi of PE by immunofluorescence assay. Besides, serum from PE patients could induce SG aggregation in human trophoblast cell line HTR-8/Svneo cells, suggesting the involvement of SGs in the development of PE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Mol B, Roberts C, Thangaratinam S, Magee L, de Groot C, Hofmeyr G. Pre-eclampsia. Lancet. 2016;387(10022):999–1011. https://doi.org/10.1016/s0140-6736(15)00070-7.

    Article  PubMed  Google Scholar 

  2. Young B, Levine R, Karumanchi S. Pathogenesis of preeclampsia. Annu Rev Pathol. 2010;5:173–92. https://doi.org/10.1146/annurev-pathol-121808-102149.

    Article  CAS  PubMed  Google Scholar 

  3. Sharma S. Autophagy-based diagnosis of pregnancy hypertension and pre-eclampsia. Am J Pathol. 2018;188(11):2457–60. https://doi.org/10.1016/j.ajpath.2018.09.001.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Venkatesha S, Toporsian M, Lam C, Hanai J, Mammoto T, Kim Y, et al. Soluble endoglin contributes to the pathogenesis of preeclampsia. Nat Med. 2006;12(6):642–9. https://doi.org/10.1038/nm1429.

    Article  CAS  PubMed  Google Scholar 

  5. Tong M, Cheng S, Chen Q, DeSousa J, Stone P, James J, et al. Aggregated transthyretin is specifically packaged into placental nano-vesicles in preeclampsia. Sci Rep. 2017;7(1):6694. https://doi.org/10.1038/s41598-017-07017-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cheng S, Davis S, Sharma S. Maternal-fetal cross talk through cell-free fetal DNA, telomere shortening, microchimerism, and inflammation. Am J Reprod Immunol. 2018;79(5):e12851. https://doi.org/10.1111/aji.12851.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Poon L, Shennan A, Hyett J, Kapur A, Hadar E, Divakar H, et al. The International Federation of Gynecology and Obstetrics (FIGO) initiative on pre-eclampsia: A pragmatic guide for first-trimester screening and prevention. Int J Gynaecol Obstet. 2019;145(suppl 1):1–33. https://doi.org/10.1002/ijgo.12802.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Schmella M, Assibey-Mensah V, Parks W, Roberts J, Jeyabalan A, Hubel C, et al. Plasma concentrations of soluble endoglin in the maternal circulation are associated with maternal vascular malperfusion lesions in the placenta of women with preeclampsia. Placenta. 2019;78:29–35. https://doi.org/10.1016/j.placenta.2019.02.014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Anderson P, Kedersha N. Stress granules: the Tao of RNA triage. Trends Biochem Sci. 2008;33(3):141–50. https://doi.org/10.1016/j.tibs.2007.12.003.

    Article  CAS  PubMed  Google Scholar 

  10. Mokas S, Mills J, Garreau C, Fournier M, Robert F, Arya P, et al. Uncoupling stress granule assembly and translation initiation inhibition. Mol Biol Cell. 2009;20(11):2673–83. https://doi.org/10.1091/mbc.e08-10-1061.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kedersha N, Stoecklin G, Ayodele M, Yacono P, Lykke-Andersen J, Fritzler M, et al. Stress granules and processing bodies are dynamically linked sites of mRNP remodeling. J Cell Biol. 2005;169(6):871–84. https://doi.org/10.1083/jcb.200502088.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Decker C, Parker R. P-bodies and stress granules: possible roles in the control of translation and mRNA degradation. Cold Spring Harb Perspect Biol. 2012;4(9):a012286. https://doi.org/10.1101/cshperspect.a012286.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Roberts J, August P, Bakris G, Barton J, Bernstein I, Druzin M, et al. Hypertension in pregnancy. Report of the American College of Obstetricians and Gynecologists’ Task Force on Hypertension in Pregnancy. Obstet. Gynecol. 2013;122(5):1122–31. https://doi.org/10.1097/01.aog.0000437382.03963.88.

    Article  Google Scholar 

  14. Yung H, Atkinson D, Campion-Smith T, Olovsson M, Charnock-Jones D. Bur ton G. Differential activation of placental unfolded protein response pathways implies heterogeneity in causation of early- and late-onset preeclampsia. J. Pathol. 2014;234(2):262–76. https://doi.org/10.1002/path.4394.

    Article  CAS  Google Scholar 

  15. Li Z, Chen Z, Zhang T, Wei C, Shi W. TGF-β and NF-κB signaling pathway crosstalk potentiates corneal epithelial senescence through an RNA stress response. Aging. 2016;8(10):2337–54. https://doi.org/10.18632/aging.101050.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Fisher S. The placental problem: linking abnormal cytotrophoblast differentiation to the maternal symptoms of preeclampsia. Reprod Biol Endocrinol. 2004;2:53. https://doi.org/10.1186/1477-7827-2-53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. George E, Granger J. Mechanisms and potential therapies for preeclampsia. Curr Hypertens Rep. 2011;13(4):269–75. https://doi.org/10.1007/s11906-011-0204-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Warrington J, George E, Palei A, Spradley F, Granger J. Recent advances in the understanding of the pathophysiology of preeclampsia. Hypertension. 2013;62(4):666–73. https://doi.org/10.1161/hypertensionaha.113.00588.

    Article  CAS  PubMed  Google Scholar 

  19. Fan J, Ishmael F, Fang X, Myers A, Cheadle C, Huang S, et al. Chemokine transcripts as targets of the RNA-binding protein HuR in human airway epithelium. J Immunol. 2011;186(4):2482–94. https://doi.org/10.4049/jimmunol.0903634.

    Article  CAS  PubMed  Google Scholar 

  20. Katsanou V, Papadaki O, Milatos S, Blackshear P, Anderson P, Kollias G, et al. HuR as a negative posttranscriptional modulator in inflammation. Mol Cell. 2005;19(6):777–89. https://doi.org/10.1016/j.molcel.2005.08.007.

    Article  CAS  PubMed  Google Scholar 

  21. Luppi P, Deloia J. Monocytes of preeclamptic women spontaneously synthesize pro-inflammatory cytokines. Clin Immunol. 2006;118(2-3):268–75. https://doi.org/10.1016/j.clim.2005.11.001.

    Article  CAS  PubMed  Google Scholar 

  22. Raghupathy R. Cytokines as key players in the pathophysiology of preeclampsia. Med Princ Pract. 2013;22(suppl 1):8–19. https://doi.org/10.1159/000354200.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Peraçoli J, Rudge M, Peraçoli M. Tumor necrosis factor-alpha in gestation and puerperium of women with gestational hypertension and pre-eclampsia. Am J Reprod Immunol. 2007;57(3):177–85. https://doi.org/10.1111/j.1600-0897.2006.00455.x.

    Article  CAS  PubMed  Google Scholar 

  24. Tangerås L, Silva G, Stødle G, Gierman L, Skei B, Collett K, et al. Placental inflammation by HMGB1 activation of TLR4 at the syncytium. Placenta. 2018;72:53–61. https://doi.org/10.1016/j.placenta.2018.10.011.

    Article  CAS  PubMed  Google Scholar 

  25. Hu S, Claud E, Musch M, Chang E. Stress granule formation mediates the inhibition of colonic Hsp70 translation by interferon-gamma and tumor necrosis factor-alpha. Am J Physiol Gastrointest Liver Physiol. 2010;298(4):G481–92. https://doi.org/10.1152/ajpgi.00234.2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Han C, Wang C, Chen Y, Wang J, Xu X, Hilton T, et al. Placenta-derived extracellular vesicles induce preeclampsia in mouse models. Haematologica. 2020;105(6):1686–94. https://doi.org/10.3324/haematol.2019.226209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuping Zhao.

Ethics declarations

Competing Interests

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 127 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, C., Li, C., Shao, S. et al. Assembly of Cytoplasmic Stress Granules in Placentas in Women with Preeclampsia. Reprod. Sci. 28, 2869–2877 (2021). https://doi.org/10.1007/s43032-021-00592-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43032-021-00592-5

Keywords

Navigation