Skip to main content

Advertisement

Log in

Mechanisms and Potential Therapies for Preeclampsia

  • Published:
Current Hypertension Reports Aims and scope Submit manuscript

Abstract

Preeclampsia is a pregnancy-induced hypertensive disorder found most commonly in nulliparous women. Recent research performed in animal models of the disease has revealed some of the underlying mechanisms of preeclampsia. Specifically, placental insufficiency and the resulting hypoxia/ischemia have been shown to be crucial to disease progression. In response to placental hypoxia/ischemia, several pathways are activated, which contribute to the clinical manifestations of the disease: increased circulating levels of the anti-angiogenic protein sFlt-1, activation of the maternal inflammatory response, suppressed nitric oxide production, enhanced endothelin-1 production, and induction of reactive oxygen formation. Despite advances in the understanding of the disorder, therapeutic approaches to the treatment of preeclampsia are severely limited. New lines of research, however, indicate some possible new therapeutic approaches for the management of preeclampsia and offer hope for an effective pharmacologic intervention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Roberts JM, Pearson GD, Cutler JA, Lindheimer MD. Summary of the NHLBI working group on research on hypertension during pregnancy. Hypertens Pregnancy. 2003;22(2):109–27.

    Article  PubMed  Google Scholar 

  2. Lindheimer MD, Kanter D. Interpreting abnormal proteinuria in pregnancy: the need for a more pathophysiological approach. Obstet Gynecol. 2010;115(2 Pt 1):365–75.

    Article  PubMed  CAS  Google Scholar 

  3. Turner JA. Diagnosis and management of pre-eclampsia: an update. Int J Womens Health. 2010;2:327–37.

    Article  PubMed  CAS  Google Scholar 

  4. Gant NF, Daley GL, Chand S, et al. A study of angiotensin II pressor response throughout primigravid pregnancy. J Clin Invest. 1973;52(11):2682–9.

    Article  PubMed  CAS  Google Scholar 

  5. Khong Y, Brosens I. Defective deep placentation. Best Pract Res Clin Obstet Gynaecol. 2010. (in press)

  6. Brosens IA, Robertson WB, Dixon HG. The role of the spiral arteries in the pathogenesis of preeclampsia. Obstet Gynecol Annu. 1972;1:177–91.

    PubMed  CAS  Google Scholar 

  7. Lim KH, Zhou Y, Janatpour M, et al. Human cytotrophoblast differentiation/invasion is abnormal in pre-eclampsia. Am J Pathol. 1997;151(6):1809–18.

    PubMed  CAS  Google Scholar 

  8. Zhu X, Wu S, Dahut WL, Parikh CR. Risks of proteinuria and hypertension with bevacizumab, an antibody against vascular endothelial growth factor: systematic review and meta-analysis. Am J Kidney Dis. 2007;49(2):186–93.

    Article  PubMed  CAS  Google Scholar 

  9. • Wu FT, Stefanini MO, Mac Gabhann F, et al. A systems biology perspective on sVEGFR1: its biological function, pathogenic role and therapeutic use. J Cell Mol Med. 2010;14(3):528–552. This review exhaustively examines the molecular mechanisms of the actions of sFlt-1 and the available physiological data about its role in human disease.

    PubMed  CAS  Google Scholar 

  10. Levine RJ, Lam C, Qian C, et al. Soluble endoglin and other circulating antiangiogenic factors in preeclampsia. N Engl J Med. 2006;355(10):992–1005.

    Article  PubMed  CAS  Google Scholar 

  11. Maynard SE, Min JY, Merchan J, et al. Excess placental soluble fms-like tyrosine kinase 1 (sFlt1) may contribute to endothelial dysfunction, hypertension, and proteinuria in preeclampsia. J Clin Invest. 2003;111(5):649–58.

    PubMed  CAS  Google Scholar 

  12. Bridges JP, Gilbert JS, Colson D, et al. Oxidative stress contributes to soluble fms-like tyrosine kinase-1 induced vascular dysfunction in pregnant rats. Am J Hypertens. 2009;22(5):564–8.

    Article  PubMed  CAS  Google Scholar 

  13. Gilbert JS, Babcock SA, Granger JP. Hypertension produced by reduced uterine perfusion in pregnant rats is associated with increased soluble fms-like tyrosine kinase-1 expression. Hypertension. 2007;50(6):1142–7.

    Article  PubMed  CAS  Google Scholar 

  14. Gilbert JS, Verzwyvelt J, Colson D, et al. Recombinant vascular endothelial growth factor 121 infusion lowers blood pressure and improves renal function in rats with placental ischemia-induced hypertension. Hypertension. 2010;55(2):380–5.

    Article  PubMed  CAS  Google Scholar 

  15. Bergmann A, Ahmad S, Cudmore M, et al. Reduction of circulating soluble Flt-1 alleviates preeclampsia-like symptoms in a mouse model. J Cell Mol Med. 2010;14(6B):1857–67.

    Article  PubMed  CAS  Google Scholar 

  16. •• Gilbert JS, Ryan MJ, LaMarca BB, et al. Pathophysiology of hypertension during preeclampsia: linking placental ischemia with endothelial dysfunction. Am J Physiol Heart Circ Physiol 2008, 294(2):H541–550. This review thoroughly covers the evidence indicating the central role of placental ischemia in the development of preeclampsia. The evidence for multiple pathways leading to the hypertensive state is covered in detail.

    Article  PubMed  CAS  Google Scholar 

  17. Zhou CC, Ahmad S, Mi T, et al. Autoantibody from women with preeclampsia induces soluble Fms-like tyrosine kinase-1 production via angiotensin type 1 receptor and calcineurin/nuclear factor of activated T-cells signaling. Hypertension. 2008;51(4):1010–9.

    Article  PubMed  CAS  Google Scholar 

  18. • Zhou CC, Zhang Y, Irani RA, et al. Angiotensin receptor agonistic autoantibodies induce pre-eclampsia in pregnant mice. Nat Med. 2008;14(8):855–862. In this paper, Zhou et al. demonstrate the importance of the AT1-AA in the development of preeclampsia-like symptoms. More importantly, they demonstrate that an epitope mimetic hepta peptide, which neutralizes the antibody, is capable of attenuating its effects. This finding suggests an intriguing target for therapeutic intervention.

    Article  PubMed  CAS  Google Scholar 

  19. Staff AC, Ranheim T, Khoury J, Henriksen T. Increased contents of phospholipids, cholesterol, and lipid peroxides in decidua basalis in women with preeclampsia. Am J Obstet Gynecol. 1999;180(3 Pt 1):587–92.

    Article  PubMed  CAS  Google Scholar 

  20. Sedeek M, Gilbert JS, LaMarca BB, et al. Role of reactive oxygen species in hypertension produced by reduced uterine perfusion in pregnant rats. Am J Hypertens. 2008;21(10):1152–6.

    Article  PubMed  CAS  Google Scholar 

  21. Anumba DO, Robson SC, Boys RJ, Ford GA. Nitric oxide activity in the peripheral vasculature during normotensive and preeclamptic pregnancy. Am J Physiol. 1999;277(2 Pt 2):H848–854.

    PubMed  CAS  Google Scholar 

  22. Nelson SH, Steinsland OS, Wang Y, et al. Increased nitric oxide synthase activity and expression in the human uterine artery during pregnancy. Circ Res. 2000;87(5):406–11.

    PubMed  CAS  Google Scholar 

  23. Khalil RA, Crews JK, Novak J, et al. Enhanced vascular reactivity during inhibition of nitric oxide synthesis in pregnant rats. Hypertension. 1998;31(5):1065–9.

    PubMed  CAS  Google Scholar 

  24. Alexander BT, Kassab SE, Miller MT, et al. Reduced uterine perfusion pressure during pregnancy in the rat is associated with increases in arterial pressure and changes in renal nitric oxide. Hypertension. 2001;37(4):1191–5.

    PubMed  CAS  Google Scholar 

  25. Lyall F, Young A, Greer IA. Nitric oxide concentrations are increased in the fetoplacental circulation in preeclampsia. Am J Obstet Gynecol. 1995;173(3 Pt 1):714–8.

    Article  PubMed  CAS  Google Scholar 

  26. Lyall F, Greer IA. The vascular endothelium in normal pregnancy and pre-eclampsia. Rev Reprod. 1996;1(2):107–16.

    Article  PubMed  CAS  Google Scholar 

  27. Yanagisawa M, Inoue A, Ishikawa T, et al. Primary structure, synthesis, and biological activity of rat endothelin, an endothelium-derived vasoconstrictor peptide. Proc Natl Acad Sci USA. 1988;85(18):6964–7.

    Article  PubMed  CAS  Google Scholar 

  28. Yanagisawa M, Kurihara H, Kimura S, et al. A novel peptide vasoconstrictor, endothelin, is produced by vascular endothelium and modulates smooth muscle Ca2+ channels. J Hypertens Suppl. 1988;6(4):S188–191.

    PubMed  CAS  Google Scholar 

  29. Yanagisawa M, Kurihara H, Kimura S, et al. A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature. 1988;332(6163):411–5.

    Article  PubMed  CAS  Google Scholar 

  30. Taylor RN, Varma M, Teng NN, Roberts JM. Women with preeclampsia have higher plasma endothelin levels than women with normal pregnancies. J Clin Endocrinol Metab. 1990;71(6):1675–7.

    Article  PubMed  CAS  Google Scholar 

  31. Bernardi F, Constantino L, Machado R, et al. Plasma nitric oxide, endothelin-1, arginase and superoxide dismutase in pre-eclamptic women. J Obstet Gynaecol Res. 2008;34(6):957–63.

    PubMed  CAS  Google Scholar 

  32. Nezar MA, el-Baky AM, Soliman OA, et al. Endothelin-1 and leptin as markers of intrauterine growth restriction. Indian J Pediatr. 2009;76(5):485–8.

    Article  PubMed  Google Scholar 

  33. Benigni A, Orisio S, Gaspari F, et al. Evidence against a pathogenetic role for endothelin in pre-eclampsia. Br J Obstet Gynaecol. 1992;99(10):798–802.

    Article  PubMed  CAS  Google Scholar 

  34. Alexander BT, Rinewalt AN, Cockrell KL, et al. Endothelin type a receptor blockade attenuates the hypertension in response to chronic reductions in uterine perfusion pressure. Hypertension. 2001;37(2 Part 2):485–9.

    PubMed  CAS  Google Scholar 

  35. LaMarca BB, Cockrell K, Sullivan E, et al. Role of endothelin in mediating tumor necrosis factor-induced hypertension in pregnant rats. Hypertension. 2005;46(1):82–6.

    Article  PubMed  CAS  Google Scholar 

  36. LaMarca B, Speed J, Fournier L, et al. Hypertension in response to chronic reductions in uterine perfusion in pregnant rats: effect of tumor necrosis factor-alpha blockade. Hypertension. 2008;52(6):1161–7.

    Article  PubMed  CAS  Google Scholar 

  37. Sedeek MH, Llinas MT, Drummond H, et al. Role of reactive oxygen species in endothelin-induced hypertension. Hypertension. 2003;42(4):806–10.

    Article  PubMed  CAS  Google Scholar 

  38. Murphy SR, LaMarca BB, Cockrell K, Granger JP. Role of endothelin in mediating soluble fms-like tyrosine kinase 1-induced hypertension in pregnant rats. Hypertension. 2010;55(2):394–8.

    Article  PubMed  CAS  Google Scholar 

  39. LaMarca B, Parrish M, Ray LF, et al. Hypertension in response to autoantibodies to the angiotensin II type I receptor (AT1-AA) in pregnant rats: role of endothelin-1. Hypertension. 2009;54(4):905–9.

    Article  PubMed  CAS  Google Scholar 

  40. Bainbridge SA, Farley AE, McLaughlin BE, et al. Carbon monoxide decreases perfusion pressure in isolated human placenta. Placenta. 2002;23(8–9):563–9.

    Article  PubMed  CAS  Google Scholar 

  41. •• Cao J, Inoue K, Li X, et al. Physiological significance of heme oxygenase in hypertension. Int J Biochem Cell Biol. 2009;41(5):1025–1033. This review thoroughly highlights the potentials and pitfalls of using HO-1 in treating hypertension. The roles of the individual metabolic byproducts are thoroughly reviewed.

    Article  PubMed  CAS  Google Scholar 

  42. Sabaawy HE, Zhang F, Nguyen X, et al. Human heme oxygenase-1 gene transfer lowers blood pressure and promotes growth in spontaneously hypertensive rats. Hypertension. 2001;38(2):210–5.

    PubMed  CAS  Google Scholar 

  43. Yang L, Quan S, Nasjletti A, et al. Heme oxygenase-1 gene expression modulates angiotensin II-induced increase in blood pressure. Hypertension. 2004;43(6):1221–6.

    Article  PubMed  CAS  Google Scholar 

  44. Coppage KH, Sun X, Baker RS, Clark KE. Expression of phosphodiesterase 5 in maternal and fetal sheep. Am J Obstet Gynecol. 2005;193(3 Pt 2):1005–10.

    Article  PubMed  CAS  Google Scholar 

  45. Wareing M, Myers JE, O’Hara M, et al. Effects of a phosphodiesterase-5 (PDE5) inhibitor on endothelium-dependent relaxation of myometrial small arteries. Am J Obstet Gynecol. 2004;190(5):1283–90.

    Article  PubMed  CAS  Google Scholar 

  46. Wareing M, Myers JE, O’Hara M, Baker PN. Sildenafil citrate (Viagra) enhances vasodilatation in fetal growth restriction. J Clin Endocrinol Metab. 2005;90(5):2550–5.

    Article  PubMed  CAS  Google Scholar 

  47. Samangaya RA, Mires G, Shennan A, et al. A randomised, double-blinded, placebo-controlled study of the phosphodiesterase type 5 inhibitor sildenafil for the treatment of preeclampsia. Hypertens Pregnancy. 2009;28(4):369–82.

    Article  PubMed  CAS  Google Scholar 

  48. Downing J. Sildenafil for the treatment of preeclampsia. Hypertens Pregnancy. 2010;29(2):248–50. author reply 251–242.

    Article  PubMed  CAS  Google Scholar 

  49. Clouthier DE, Hosoda K, Richardson JA, et al. Cranial and cardiac neural crest defects in endothelin-A receptor-deficient mice. Development. 1998;125(5):813–24.

    PubMed  CAS  Google Scholar 

  50. Taniguchi T, Muramatsu I. Pharmacological knockout of endothelin ET(A) receptors. Life Sci. 2003;74(2–3):405–9.

    Article  PubMed  CAS  Google Scholar 

Download references

Disclosure

No potential conflicts of interest relevant to this article were reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joey P. Granger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

George, E.M., Granger, J.P. Mechanisms and Potential Therapies for Preeclampsia. Curr Hypertens Rep 13, 269–275 (2011). https://doi.org/10.1007/s11906-011-0204-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11906-011-0204-0

Keywords

Navigation