Skip to main content
Log in

The Protective Effects of l-Carnitine and Zinc Oxide Nanoparticles Against Diabetic Injury on Sex Steroid Hormones Levels, Oxidative Stress, and Ovarian Histopathological Changes in Rat

  • Reproductive Biology: Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Diabetes mellitus is a common chronic metabolic disorder. This study aimed to investigate the effects of co-treatment with l-carnitine (LC) and zinc oxide nanoparticles (ZnONPs) on serum levels of sex hormones, oxidative stress, and ovarian histopathology in streptozotocin (STZ)-induced diabetic rats. Female Wistar rats (n = 56, 180–220 g) received a single intraperitoneal (IP) injection of STZ (65 mg/kg). They were randomly assigned into the following groups: diabetic group (Dia), Dia+Met group (100 mg metformin/kg/day), Dia+LC group (200 mg/kg/day), Dia+ZnONPs group (10 mg/kg/day), and Dia+LC+ZnONPs group (200 mg LC/kg/day and 10 mg ZnONPs/kg/day). Control group (Ctl) received the same volume of STZ solvent. After 21 days of treatment, blood serum was centrifuged for sex hormone assays. The right ovary was used for biochemical analysis, and the left ovary was fixed in 10% neutral buffered formalin for histological assessment. The levels of estradiol, progesterone, FSH, and LH significantly increased in the Dia+ZnONPs+LC group (P < 0.001) compared with the Dia group. Co-treatment with LC and ZnONPs reduced malondialdehyde and carbonyl protein and increased glutathione, catalase, and superoxide dismutase activities in ovarian tissue compared with the Dia group (P < 0.05). Moreover, the number of all ovarian follicles significantly increased in this group compared with the Dia group (P < 0.05). The results of this study indicated that co-treatment with LC and ZnONPs could preserve ovarian function by increasing sex hormones levels and antioxidant activity and decreasing lipid peroxidation in diabetic rats. Therefore, this compound supplementation may improve ovulation and fertility in people with diabetes mellitus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Shah A, Afzal M. Prevalence of diabetes and hypertension and association with various risk factors among different Muslim populations of Manipur, India. J Diabetes Metab Disord. 2013;12(1):52.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Oueslati N, Charradi K, Bedhiafi T, Limam F, Aouani E. Protective effect of grape seed and skin extract against diabetes-induced oxidative stress and renal dysfunction in virgin and pregnant rat. Biomed Pharmacother. 2016;83:584–92.

    Article  CAS  PubMed  Google Scholar 

  3. Rashid K, Sil PC. Curcumin ameliorates testicular damage in diabetic rats by suppressing cellular stress-mediated mitochondria and endoplasmic reticulum-dependent apoptotic death. Biochim Biophys Acta. 2015;1852(1):70–82.

    Article  CAS  PubMed  Google Scholar 

  4. Tok EC, Ertunc D, Evruke C, Dilek S. The androgenic profile of women with non-insulin-dependent diabetes mellitus. J Reprod Med. 2004;49(9):746–52.

    CAS  PubMed  Google Scholar 

  5. Yeshaya A, Orvieto R, Dicker D, Karp M, Ben-Rafael Z. Menstrual characteristics of women suffering from insulin-dependent diabetes mellitus. Int J Fertil Menopausal Stud. 1995;40(5):269–73.

    CAS  PubMed  Google Scholar 

  6. Dorman JS, Steenkiste AR, Foley TP, Strotmeyer ES, Burke JP, Kuller LH, et al. Menopause in type 1 diabetic women: is it premature? Diabetes. 2001;50(8):1857–62.

    Article  CAS  PubMed  Google Scholar 

  7. Garris DR. Effects of progressive hyperglycemia on ovarian structure and function in the spontaneously diabetic Chinese hamster. Anat Rec. 1984;210(3):485–9.

    Article  CAS  PubMed  Google Scholar 

  8. Cox N, Meurer K, Carlton C, Tubbs R, Mannis D. Effect of diabetes mellitus during the luteal phase of the oestrous cycle on preovulatory follicular function, ovulation and gonadotrophins in gilts. J Reprod Fertil. 1994;101(1):77–86.

    Article  CAS  PubMed  Google Scholar 

  9. Cheng P-P, Xia J-J, Wang H-L, Chen J-B, Wang F-Y, Zhang Y, et al. Islet transplantation reverses the effects of maternal diabetes on mouse oocytes. Reproduction. 2011;141(4):417–24.

    Article  CAS  PubMed  Google Scholar 

  10. Sanchez-Rangel E, Inzucchi SE. Metformin: clinical use in type 2 diabetes. Diabetologia. 2017;60(9):1586–93.

    Article  CAS  PubMed  Google Scholar 

  11. Di Pietro M, Parborell F, Irusta G, Pascuali N, Bas D, Bianchi MS, et al. Metformin regulates ovarian angiogenesis and follicular development in a female polycystic ovary syndrome rat model. Endocrinology. 2015;156(4):1453–63.

    Article  PubMed  CAS  Google Scholar 

  12. Duan X, Li Y. Physicochemical characteristics of nanoparticles affect circulation, biodistribution, cellular internalization, and trafficking. Small. 2013;9(9–10):1521–32.

    Article  CAS  PubMed  Google Scholar 

  13. Siddiqui SA, Or Rashid MM, Uddin MG, Robel FN, Hossain MS, Haque MA, et al. Biological efficacy of zinc oxide nanoparticles against diabetes: a preliminary study conducted in mice. Biosci Rep. 2020;40(4):BSR20193972.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Akpolat M, Gulle K, Topcu-Tarladacalisir Y, Safi Oz Z, Bakkal BH, Arasli M, et al. Protection by L-carnitine against radiation-induced ileal mucosal injury in the rat: pattern of oxidative stress, apoptosis and cytokines. Int J Radiat Biol. 2013;89(9):732–40.

    Article  CAS  PubMed  Google Scholar 

  15. Turker Y, Naziroglu M, Gumral N, Celik O, Saygin M, Comlekci S, et al. Selenium and L-carnitine reduce oxidative stress in the heart of rat induced by 2.45-GHz radiation from wireless devices. Biol Trace Elem Res. 2011;143(3):1640–50.

    Article  CAS  PubMed  Google Scholar 

  16. Celik F, Kose M, Yilmazer M, Koken GN, Arioz DT, Kanat PM. Plasma L-carnitine levels of obese and non-obese polycystic ovary syndrome patients. J Obstet Gynaecol. 2017;37(4):476–9.

    Article  CAS  PubMed  Google Scholar 

  17. Mendez-Cuesta LA, Marquez-Valadez B, Perez-De la Cruz V, Maldonado PD, Santana RA, Escobar-Briones C, et al. Early changes in oxidative stress markers in a rat model of acute stress: effect of l-carnitine on the striatum. Basic Clin Pharmacol Toxicol. 2011;109(2):123–9.

    Article  CAS  PubMed  Google Scholar 

  18. Bene J, Hadzsiev K, Melegh B. Role of carnitine and its derivatives in the development and management of type 2 diabetes. Nutr Diabetes. 2018;8(1):8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Marcondes F, Bianchi F, Tanno A. Determination of the estrous cycle phases of rats: some helpful considerations. Braz J Biol. 2002;62(4A):609–14.

    Article  CAS  PubMed  Google Scholar 

  20. Mohammadi M, Zare Z. Effects of treadmill exercise on cognitive functions and anxiety-related behaviors in ovariectomized diabetic rats. Physiol Behav. 2020;224:113021.

    Article  CAS  PubMed  Google Scholar 

  21. Rezaei N, Mardanshahi T, Shafaroudi MM, Abedian S, Mohammadi H, Zare Z. Effects of L-carnitine on the follicle-stimulating hormone, luteinizing hormone, testosterone, and testicular tissue oxidative stress levels in streptozotocin-induced diabetic rats. J Evid Based Integr Med. 2018;23:2515690x18796053.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Beutler E, Duron O, Kelly B. Improvement method for the determination of glutathione in tissue homogenate. J Lab Clin Med. 1963;61:882–8.

    CAS  PubMed  Google Scholar 

  23. Kei S. Serum lipid peroxide in cerebrovascular disorders determined by a new colorimetric method. Clin Chim Acta. 1978;90(1):37–43.

    Article  Google Scholar 

  24. Levine RL, Garland D, Oliver CN, Amici A, Climent I, Lenz AG, et al. Determination of carbonyl content in oxidatively modified proteins. Methods Enzymol. 1990;186:464–78.

    Article  CAS  PubMed  Google Scholar 

  25. Khedr NF. Fish oil and wheat-germ oil supplementation restores ovarian function in streptozotocin-diabetic rats. Reprod Fertil Dev. 2017;29(9):1689–98.

    Article  CAS  PubMed  Google Scholar 

  26. Ranasinghe P, Pigera S, Galappatthy P, Katulanda P, Constantine GR. Zinc and diabetes mellitus: understanding molecular mechanisms and clinical implications. Daru. 2015;23:44.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Rani AJ, Mythili SV. Study on total antioxidant status in relation to oxidative stress in type 2 diabetes mellitus. J Clin Diagn Res. 2014;8(3):108–10.

    PubMed  PubMed Central  Google Scholar 

  28. Garris DR, Garris BL. Cytolipotoxicity-induced involution of the female reproductive tract following expression of obese (ob/ob) and diabetes (db/db) genotype mutations: progressive, hyperlipidemic transformation into adipocytic tissues. Reprod Toxicol. 2004;18(1):81–91.

    Article  CAS  PubMed  Google Scholar 

  29. Wu J, Yan LJ. Streptozotocin-induced type 1 diabetes in rodents as a model for studying mitochondrial mechanisms of diabetic β cell glucotoxicity. Diabetes Metab Syndr Obes. 2015;8:181–8.

    PubMed  PubMed Central  Google Scholar 

  30. Vella S, Buetow L, Royle P, Livingstone S, Colhoun HM, Petrie JR. The use of metformin in type 1 diabetes: a systematic review of efficacy. Diabetologia. 2010;53(5):809–20.

    Article  CAS  PubMed  Google Scholar 

  31. Livingstone R, Boyle JG, Petrie JR. A new perspective on metformin therapy in type 1 diabetes. Diabetologia. 2017;60(9):1594–600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Faure P, Benhamou P, Perard A, Halimi S, Roussel A. Lipid peroxidation in insulin-dependent diabetic patients with early retina degenerative lesions: effects of an oral zinc supplementation. Eur J Clin Nutr. 1995;49(4):282–8.

    CAS  PubMed  Google Scholar 

  33. Anderson RA, Roussel A-M, Zouari N, Mahjoub S, Matheau J-M, Kerkeni A. Potential antioxidant effects of zinc and chromium supplementation in people with type 2 diabetes mellitus. J Am Coll Nutr. 2001;20(3):212–8.

    Article  CAS  PubMed  Google Scholar 

  34. Faure P, Corticelli P, Richard MJ, Arnaud J, Coudray C, Halimi S, et al. Lipid peroxidation and trace element status in diabetic ketotic patients: influence of insulin therapy. Clin Chem. 1993;39(5):789–93.

    Article  CAS  PubMed  Google Scholar 

  35. Afifi M, Almaghrabi OA, Kadasa NM. Ameliorative effect of zinc oxide nanoparticles on antioxidants and sperm characteristics in streptozotocin-induced diabetic rat testes. Biomed Res Int. 2015;2015:153573.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Wang Q, Ju X, Chen Y, Dong X, Luo S, Liu H, et al. Effects of L-carnitine against H2O2-induced oxidative stress in grass carp ovary cells (Ctenopharyngodon idellus). Fish Physiol Biochem. 2016;42(3):845–57.

    Article  CAS  PubMed  Google Scholar 

  37. Samir SM, Abbas AM, Safwat SM, Elserougy HG. Effect of L-carnitine on diabetes-induced changes of skeletal muscles in rats. J Basic Clin Physiol Pharmacol. 2018;29(1):47–59.

    Article  CAS  PubMed  Google Scholar 

  38. Hino K, Nishikawa M, Sato E, Inoue M. L-carnitine inhibits hypoglycemia-induced brain damage in the rat. Brain Res. 2005;1053(1–2):77–87.

    Article  CAS  PubMed  Google Scholar 

  39. Dupont J, Scaramuzzi RJ. Insulin signalling and glucose transport in the ovary and ovarian function during the ovarian cycle. Biochem J. 2016;473(11):1483–501.

    Article  CAS  PubMed  Google Scholar 

  40. Nasiadek M, Danilewicz M, Sitarek K, Swiatkowska E, Darago A, Stragierowicz J, et al. The effect of repeated cadmium oral exposure on the level of sex hormones, estrous cyclicity, and endometrium morphometry in female rats. Environ Sci Pollut Res Int. 2018;25(28):28025–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Yildiz M, Sandikci M. Changes in rat ovary with experimentally induced diabetes and the effects of lycopene on those changes. Romanian J Morphol Embryol. 2016;57(2):703–13.

    Google Scholar 

  42. Pala HG, Pala EE, Artunc Ulkumen B, Aktug H, Yavasoglu A, Korkmaz HA, et al. The protective effect of granulocyte colony-stimulating factor on endometrium and ovary in a rat model of diabetes mellitus. Gynecol Obstet Investig. 2014;78(2):94–100.

    Article  CAS  Google Scholar 

  43. Wu Y, Li Y, Liao X, Wang Z, Li R, Zou S, et al. Diabetes induces abnormal ovarian function via triggering apoptosis of granulosa cells and suppressing ovarian angiogenesis. Int J Biol Sci. 2017;13(10):1297–308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Erfani Majd N, Azizian H, Tabandeh MR, Shahriari A. Effect of Abelmoschus esculentus powder on ovarian histology, expression of apoptotic genes and oxidative stress in diabetic rats fed with high fat diet. Iran J Pharm Res. 2019;18(1):369–82.

    PubMed  PubMed Central  Google Scholar 

  45. Garris DR, Garris BL. Diabetes (db/db) mutation-induced ovarian involution: progressive hypercytolipidemia. Exp Biol Med (Maywood). 2003;228(9):1040–50.

    Article  CAS  Google Scholar 

  46. Zare Z, Abouhamzeh B, Masteri Farahani R, Salehi M, Mohammadi M. Supplementation of L-carnitine during in vitro maturation of mouse oocytes affects expression of genes involved in oocyte and embryo competence: an experimental study. Int J Reprod Biomed. 2017;15(12):779–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors thank the Laboratory Animal House of the university (Project number: 97-3038).

Funding

The Immunogenic Research Center (IRC) of Sari Medical Faculty and Chancellor for Research and Technology of Mazandaran University of Medical Sciences, Mazandaran, Iran, financially supported this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nourollah Rezaei.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Majidi, F.Z., Rezaei, N., Zare, Z. et al. The Protective Effects of l-Carnitine and Zinc Oxide Nanoparticles Against Diabetic Injury on Sex Steroid Hormones Levels, Oxidative Stress, and Ovarian Histopathological Changes in Rat. Reprod. Sci. 28, 888–896 (2021). https://doi.org/10.1007/s43032-020-00317-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43032-020-00317-0

Keywords

Navigation