Skip to main content
Log in

Fourth-order time-stepping compact finite difference method for multi-dimensional space-fractional coupled nonlinear Schrödinger equations

  • Original Paper
  • Published:
SN Partial Differential Equations and Applications Aims and scope Submit manuscript

Abstract

In this work, an efficient fourth-order time-stepping compact finite difference scheme is devised for the numerical solution of multi-dimensional space-fractional coupled nonlinear Schrödinger equations. Some existing numerical schemes for these equations lead to full and dense matrices due to the non-locality of the fractional operator. To overcome this challenge, the spatial discretization in our method is carried out by using the compact finite difference scheme and matrix transfer technique in which FFT-based computations can be utilized. This avoids storing the large matrix from discretizing the fractional operator and also significantly reduces the computational costs. The amplification symbol of this scheme is investigated by plotting its stability regions, which indicates the stability of the scheme. Numerical experiments show that this scheme preserves the conservation laws of mass and energy, and achieves the fourth-order accuracy in both space and time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Amore, P., Fernández, F.M., Hofmann, C.P., Sáenz, R.A.: Collocation method for fractional quantum mechanics. J. Math. Phys. 51(12), 122101 (2010)

    Article  MathSciNet  Google Scholar 

  2. Beylkin, G., Keiser, J.M., Vozovoi, L.: A new class of time discretization schemes for the solution of nonlinear PDEs. J. Comput. Phys. 147(2), 362–387 (1998)

    Article  MathSciNet  Google Scholar 

  3. Bhatt, H., Khaliq, A., Furati, K.: Efficient High-Order Compact Exponential Time Differencing Method for Space-Fractional Reaction–Diffusion Systems with Nonhomogeneous Boundary Conditions. Numerical Algorithms, pp. 1–25. Springer, New York (2019)

    Google Scholar 

  4. Bhatt, H.P., Khaliq, A.Q.M.: Fourth-order compact schemes for the numerical simulation of coupled Burgers’ equation. Comput. Phys. Commun. 200, 117–138 (2016)

    Article  MathSciNet  Google Scholar 

  5. Cox, S.M., Matthews, P.C.: Exponential time differencing for stiff systems. J. Comput. Phys. 176(2), 430–455 (2002)

    Article  MathSciNet  Google Scholar 

  6. Demengel, F., Demengel, G., Erné, R.: Functional Spaces for the Theory of Elliptic Partial Differential Equations. Springer, London (2012)

    Book  Google Scholar 

  7. Ding, H.-F., Zhang, Y.-X.: New numerical methods for the Riesz space fractional partial differential equations. Comput. Math. Appl. 63(7), 1135–1146 (2012)

    Article  MathSciNet  Google Scholar 

  8. Duan, B., Zheng, Z., Cao, W., et al.: Finite element method for a kind of two-dimensional space-fractional diffusion equation with its implementation. Am. J. Comput. Math. 5(02), 135 (2015)

    Article  Google Scholar 

  9. Duo, S., Wang, H., Zhang, Y.: A comparative study on nonlocal diffusion operators related to the fractional Laplacian. arXiv preprint arXiv:1711.06916 (2017)

  10. Guo, B., Huang, D.: Existence and stability of standing waves for nonlinear fractional Schrödinger equations. J. Math. Phys. 53(8), 083702 (2012)

    Article  MathSciNet  Google Scholar 

  11. Guo, B., Huo, Z.: Global well-posedness for the fractional nonlinear Schrödinger equation. Commun. Partial Differ. Equ. 36(2), 247–255 (2010)

    Article  Google Scholar 

  12. Hu, Y., Kallianpur, G.: Schrödinger equations with fractional Laplacians. Appl. Math. Optim. 42(3), 281–290 (2000)

    Article  MathSciNet  Google Scholar 

  13. Ilic, M., Liu, F., Turner, I., Anh, V.: Numerical approximation of a fractional-in-space diffusion equation, I. Fract. Calculus Appl. Anal. 8(3), 323–341 (2005)

    MathSciNet  MATH  Google Scholar 

  14. Ilic, M., Liu, F., Turner, I., Anh, V.: Numerical approximation of a fractional-in-space diffusion equation (II)-with nonhomogeneous boundary conditions. Fract. Calculus Appl. Anal. 9(4), 333–349 (2006)

    MathSciNet  MATH  Google Scholar 

  15. Ismail, M.: A fourth-order explicit schemes for the coupled nonlinear Schrödinger equation. Appl. Math. Comput. 196(1), 273–284 (2008)

    Article  MathSciNet  Google Scholar 

  16. Ismail,M., Taha,T. R.: Parallel methods and higher dimensional NLS equations. In Abstract and Applied Analysis, volume 2013. Hindawi (2013)

  17. Krogstad, S.: Generalized integrating factor methods for stiff PDES. J. Comput. Phys. 203(1), 72–88 (2005)

    Article  MathSciNet  Google Scholar 

  18. Laskin, N.: Fractional quantum mechanics. Phys. Rev. E 62(3), 3135 (2000)

    Article  MathSciNet  Google Scholar 

  19. Laskin, N.: Fractional quantum mechanics and Lévy path integrals. Phys. Lett. A 268(4–6), 298–305 (2000)

    Article  MathSciNet  Google Scholar 

  20. Laskin, N.: Fractional Schrödinger equation. Phys. Rev. E 66(5), 056108 (2002)

    Article  MathSciNet  Google Scholar 

  21. Li, M.: A high-order split-step finite difference method for the system of the space fractional CNLS. Eur. Phys. J. Plus 134(5), 244 (2019)

    Article  Google Scholar 

  22. Li, M., Gu, X.-M., Huang, C., Fei, M., Zhang, G.: A fast linearized conservative finite element method for the strongly coupled nonlinear fractional Schrödinger equations. J. Comput. Phys. 358, 256–282 (2018)

    Article  MathSciNet  Google Scholar 

  23. Longhi, S.: Fractional Schrödinger equation in optics. Opt. Lett. 40(6), 1117–1120 (2015)

    Article  Google Scholar 

  24. Nørsett, S.P., Wolfbrandt, A.: Attainable order of rational approximations to the exponential function with only real poles. BIT Numer. Math. 17(2), 200–208 (1977)

    Article  MathSciNet  Google Scholar 

  25. Secchi, S., Squassina, M.: Soliton dynamics for fractional Schrödinger equations. Appl. Anal. 93(8), 1702–1729 (2014)

    Article  MathSciNet  Google Scholar 

  26. Van Loan,C.: Computational frameworks for the fast Fourier transform, volume 10. Siam, (1992)

  27. Wang, D., Xiao, A., Yang, W.: Crank–Nicolson difference scheme for the coupled nonlinear Schrödinger equations with the Riesz space fractional derivative. J. Comput. Phys. 242, 670–681 (2013)

    Article  MathSciNet  Google Scholar 

  28. Wang, D., Xiao, A., Yang, W.: A linearly implicit conservative difference scheme for the space fractional coupled nonlinear Schrödinger equations. J. Comput. Phys. 272, 644–655 (2014)

    Article  MathSciNet  Google Scholar 

  29. Wang, D., Xiao, A., Yang, W.: Maximum-norm error analysis of a difference scheme for the space fractional CNLS. Appl. Math. Comput. 257, 241–251 (2015)

    Article  MathSciNet  Google Scholar 

  30. Wang, P., Huang, C.: An energy conservative difference scheme for the nonlinear fractional Schrödinger equations. J. Comput. Phys. 293, 238–251 (2015)

    Article  MathSciNet  Google Scholar 

  31. Wang, P., Huang, C.: Split-step alternating direction implicit difference scheme for the fractional Schrödinger equation in two dimensions. Comput. Math. Appl. 71(5), 1114–1128 (2016)

    Article  MathSciNet  Google Scholar 

  32. Yang, Q., Liu, F., Turner, I.: Numerical methods for fractional partial differential equations with Riesz space fractional derivatives. Appl. Math. Model. 34(1), 200–218 (2010)

    Article  MathSciNet  Google Scholar 

  33. Yang, Q., Turner, I., Liu, F., Ilić, M.: Novel numerical methods for solving the time-space fractional diffusion equation in two dimensions. SIAM J. Sci. Comput. 33(3), 1159–1180 (2011)

    Article  MathSciNet  Google Scholar 

  34. Zhang, G., Huang, C., Li, M.: A mass-energy preserving Galerkin fem for the coupled nonlinear fractional Schrödinger equations. Eur. Phys. J. Plus 133(4), 155 (2018)

    Article  Google Scholar 

  35. Zhao, S., Ovadia, J., Liu, X., Zhang, Y.-T., Nie, Q.: Operator splitting implicit integration factor methods for stiff reaction–diffusion–advection systems. J. Comput. Phys. 230(15), 5996–6009 (2011)

    Article  MathSciNet  Google Scholar 

  36. Zhao, X., Sun, Z.-Z., Hao, Z.-P.: A fourth-order compact ADI scheme for two-dimensional nonlinear space fractional Schrodinger equation. SIAM J. Sci. Comput. 36(6), A2865–A2886 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the editor and referees for their valuable comments and suggestions which improved the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fei Liu.

Additional information

This article is part of the section “Computational Approaches” edited by Siddhartha Mishra.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Almushaira, M., Liu, F. Fourth-order time-stepping compact finite difference method for multi-dimensional space-fractional coupled nonlinear Schrödinger equations. SN Partial Differ. Equ. Appl. 1, 45 (2020). https://doi.org/10.1007/s42985-020-00048-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42985-020-00048-6

Keywords

Mathematics Subject Classification

Navigation