Skip to main content
Log in

The effect of woody plants on the understory soil parameters is different between grazed and ungrazed areas

  • Original Article
  • Published:
Community Ecology Aims and scope Submit manuscript

Abstract

Facilitative role of woody plants often modifies understory soil parameters. However, the effect of individual shrubs on soil qualitative parameters could be variable in the grasslands depending on the presence of grazing, and little is known about how facilitative interactions between woody plants and soil change with grazing. Therefore, in this study, we compared the conservative role of woody plant species on soil between grazed and ungrazed areas. Soil samples were collected beneath (patch) and outside (interpatch) of the canopy of Crataegus pseudomelanicarpa in grazed and ungrazed areas in the autumn. The content of total nitrogen (TN), total carbon (TC), particulate organic matter (POM), moisture and soil aggregate stability were compared between patch and interpatch in both grazed and ungrazed areas. Generally, the results showed that the main effects of the woody species were significant on the soil parameters (p < 0.05). The presence of the woody species in both grazed and ungrazed areas improved the values of all understory soil qualitative parameters. However, soil parameters such as POM, TC and TN were significantly higher in the patch (24.43 gr/kg, 1.53% and 0.20%, respectively) than in interpatch (15.41 gr/kg, 1.35 and 0.14%, respectively) in the grazed area, while in the ungrazed area, these differences were less pronounced or not significant between patch (26.00 gr/kg, 1.43 and 0.18%, respectively) and interpatch (19.10 gr/kg, 1.43 and 0.15%, respectively). We conclude that the nursing role of woody plants on soil in the degraded grasslands is more important when associated with grazing and should be considered in the restoration projects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abdulahi, M. M., Ebro, A., & Nigatu, L. (2016). Impact of woody plants species on soil physio-chemical properties along grazing gradients in rangelands of Eastern Ethiopia. Tropical and Subtropical Agroecosystems, 19, 343–355.

    Google Scholar 

  • Aerts, R., Maes, W., November, E., Behailu, M., Poesen, J., Deckers, J., Hermy, M., & Muys, B. (2006). Surface runoff and seed trapping efficiency of shrubs in a regenerating semiarid woodland in northern Ethiopia. CATENA, 65(1), 61–70.

    Article  Google Scholar 

  • Archer, S. R., Andersen, E. M., Predick, K. I., Schwinning, S., Steidl, R. J., & Woods, S. R. (2017). Woody plant encroachment: Causes and consequences. in Rangeland Systems, Springer Series on Environmental Management. ed. D. Briske (New York, NY: Springer), 25–84.

  • Asfaw, S., Pallante, G., & Palma, A. (2020). Distributional impacts of soil erosion on agricultural productivity and welfare in Malawi. Ecological Economics, 177, 106764.

    Article  Google Scholar 

  • Babiker, I. S., Mohamed, M. A. A., Terao, H., Kato, K., & Ohta, K. (2004). Assessment of groundwater contamination by nitrate leaching from intensive vegetable cultivation using geographical information system. Environment International, 29, 1009–1017.

    Article  CAS  PubMed  Google Scholar 

  • Badano, E. I., Pérez, D., & Vergara, C. H. (2009). Love of nurse plants is not enough for restoring oak forests in a seasonally dry tropical environment. Restoration Ecology, 17(5), 571–576.

    Article  Google Scholar 

  • Barzegaran, F. (2018). Effect of Crataegus psudomelanocarpa patches on soil physico-chemical characteristics and seed bank in over-grazed conditions. MSc. Thesis, Tarbiat Modares University, Iran.

  • Baskan, O., Dengiz, O., & Gunturk, A. (2016). Effects of toposequence and land use-land cover on the spatial distribution of soil properties. Environmental Earth Sciences, 75, 1–10.

    Article  Google Scholar 

  • Bilotta, G. S., Brazier, R. E., & Haygarth, P. M. (2007). The impacts of grazing animals on the quality of soils, vegetation, and surface waters in intensively managed grasslands. Advances in Agronomy, 94, 237–280.

    Article  CAS  Google Scholar 

  • Blakemore, P.L, Searle, B.K., & Daly, B.K. (1972). Methods of Chemical Analysis of Soils. New Zealand Soil Bureau Report, 10A, Government Printer, Wellington.

  • Bloor, J. M., Tardif, A., & Pottier, J. (2020). Spatial heterogeneity of vegetation structure, plant N pools and Soil N content in relation to grassland management. Agronomy, 10(5), 716. https://doi.org/10.3390/agronomy10050716

    Article  CAS  Google Scholar 

  • Burkart, M. R., & Stoner, J. D. (2002). Nitrate in aquifers beneath agricultural systems. Water Science & Technology, 45, 19–29.

    Article  CAS  Google Scholar 

  • Cambardella, C. A., & Elliott, E. T. (1993). Carbon and nitrogen distribution in aggregates from cultivated and native grassland soils. Soil Science Society of America Journal, 57(4), 1071–1076.

    Article  CAS  Google Scholar 

  • Cambardella, C. A., Gajda, A. M., Doran, J. W., Wienhold, B. J., Kettler, T. A., & Lal, R. (2001). Estimation of particulate and total organic matter by weight loss-on-ignition. Assessment Methods for Soil Carbon, (pp. 349–359).CRS Press.

  • Carrizo, M. E., Alesso, C. A., Cosentino, D., & Imhoff, S. (2015). Aggregation agents and structural stability in soils with different texture and organic carbon contents. Scientia Agricola, 72, 75–82.

    Article  Google Scholar 

  • Castro, J., Zamora, R., Hódar, J. A., Gómez, J. M., & Gómez-Aparicio, L. (2004). Benefits of using shrubs as nurse plants for reforestation in Mediterranean mountains: A 4-year study. Restoration Ecology, 12(3), 352–358.

    Article  Google Scholar 

  • Cavieres, L. A., Badano, E. I., Sierra-Almeida, A., Gómez-González, S., & Molina-Montenegro, M. A. (2006). Positive interactions between alpine plant species and the nurse cushion plant Laretia acaulis do not increase with elevation in the Andes of central Chile. New Phytologist, 169(1), 59–69.

    Article  PubMed  Google Scholar 

  • Cerdà, A. (1998). Soil aggregate stability under different Mediterranean vegetation types. CATENA, 32(2), 73–86.

    Article  Google Scholar 

  • Chaney, K., & Swift, R. S. (1984). The influence of organic matter on aggregate stability in some British soils. Journal of Soil Science, 35(2), 223–230.

    Article  CAS  Google Scholar 

  • Chen, J., & Tang, H. (2016). Effect of grazing exclusion on vegetation characteristics and soil organic carbon of Leymus chinensis grassland in northern China. Sustainability, 8(1), 56.

    Article  CAS  Google Scholar 

  • Chen, Y., Shao, Y., Xi, J., Yuan, Z., Ye, Y., & Wang, T. (2020). Community preferences of woody plant species in a heterogeneous temperate forest. China. Frontiers in Ecology and Evolution, 8, 165. https://doi.org/10.3389/fevo.2020.00165

    Article  Google Scholar 

  • Curiel Yuste, J., Baldocchi, D. D., Gershenson, A., Goldstein, A., Misson, L., & Wong, S. (2007). Microbial soil respiration and its dependency on carbon inputs, soil temperature and moisture. Global Change Biology, 13(9), 2018–2035.

    Article  Google Scholar 

  • Daryanto, S., Eldridge, D. J., & Throop, H. L. (2013). Managing semi-arid woodlands for carbon storage: Grazing and shrub effects on above-and belowground carbon. Agriculture, Ecosystems & Environment, 169, 1–11.

    Article  Google Scholar 

  • Deluz, C., Nussbaum, M., Sauzet, O., Gondret, K., & Boivin, P. (2020). Evaluation of the potential for soil organic carbon content monitoring with farmers. Frontiers in Environmental Science, 8, 113. https://doi.org/10.3389/fenvs.2020.00113

    Article  Google Scholar 

  • Dohn, J., Dembélé, F., Karembé, M., Moustakas, A., Amévor, K. A., & Hanan, N. P. (2013). Tree effects on grass growth in savannas: Competition, facilitation and the stress-gradient hypothesis. Journal of Ecology, 101(1), 202–209.

    Article  Google Scholar 

  • Eldridge, D. J., Beecham, G., & Grace, J. B. (2015). Do shrubs reduce the adverse effects of grazing on soil properties? Ecohydrology, 8(8), 1503–1513.

    Article  Google Scholar 

  • Eldridge, D. J., Travers, S. K., Val, J., Wang, J. T., Liu, H., Singh, B. K., & Delgado-Baquerizo, M. (2020). Grazing regulates the spatial heterogeneity of soil microbial communities within ecological networks. Ecosystems, 23(5), 932–942.

    Article  CAS  Google Scholar 

  • Erfanzadeh, R., Bahrami, B., Motamedi, J., & Pétillon, J. (2014). Changes in soil organic matter driven by shifts in co-dominant plant species in a grassland. Geoderma, 213, 74–78.

    Article  CAS  Google Scholar 

  • Erfanzadeh, R., Kahnuj, S. H. H., Azarnivand, H., & Pétillon, J. (2013). Comparison of soil seed banks of habitats distributed along an altitudinal gradient in northern Iran. Flora-Morphology, Distribution, Functional Ecology of Plants, 208(5–6), 312–320.

    Article  Google Scholar 

  • Erfanzadeh, R., Shahbazian, R., & Zali, H. (2014). Role of plant patches in preserving flora from the soil seed bank in an overgrazed high-mountain habitat in northern Iran. Journal of Agricultural Science and Technology, 16(1), 229–238.

    Google Scholar 

  • Facelli, J. M., & Temby, A. M. (2002). Multiple effects of shrubs on annual plant communities in arid lands of South Australia. Austral Ecology, 27(4), 422–432.

    Article  Google Scholar 

  • Follett, R. F., & Reed, D. A. (2010). Soil carbon sequestration in grazing lands: Societal benefits and policy implications. Rangeland Ecology & Management, 63(1), 4–15.

    Article  Google Scholar 

  • Franzluebbers, A. J., Stuedemann, J. A., & Schomberg, H. H. (2000). Spatial distribution of soil carbon and nitrogen pools under grazed tall fescue. Soil Science Society of America Journal, 64(2), 635–639.

    Article  CAS  Google Scholar 

  • Han, J. G., Zhang, Y. J., Wang, C. J., Bai, W. M., Wang, Y. R., Han, G. D., & Li, L. H. (2008). Rangeland degradation and restoration management in China. The Rangeland Journal, 30(2), 233–239.

    Article  Google Scholar 

  • Handayani, I. P., Coyne, M., Barton, C. D., & Workman, S. (2008). Soil carbon pools and aggregation following stream restoration in a riparian corridor: Bernheim Forest, Kentucky. Journal of Environmental Monitoring and Restoration, 4, 11–28.

    Article  Google Scholar 

  • Hart, S. P., & Marshall, D. J. (2013). Environmental stress facilitation, competition and coexistence. Ecology, 94(1), 2719–2731.

    Article  PubMed  Google Scholar 

  • Haynes, R. J. (1999). Labile organic matter fractions and aggregate stability under short-term, grass-based leys. Soil Biology and Biochemistry, 31(13), 1821–1830.

    Article  CAS  Google Scholar 

  • Haynes, R. J., & Williams, P. H. (1993). Nutrient cycling and soil fertility in the grazed pasture ecosystem. Advances in Agronomy, 49, 119–199.

    Article  CAS  Google Scholar 

  • Heumann, S., Böttcher, J., & Springob, G. (2002). N mineralization parameters of sandy arable soils. Journal of Plant Nutrition and Soil Science, 166, 308–318.

    Article  Google Scholar 

  • Howard, K. S., Eldridge, D. J., & Soliveres, S. (2012). Positive effects of shrubs on plant species diversity do not change along a gradient in grazing pressure in an arid shrubland. Basic and Applied Ecology, 13(2), 159–168.

    Article  Google Scholar 

  • Khalil, M. I., Francaviglia, R., Henry, B., Klumpp, K., Koncz, P., Llorente, M., ... & Nerger, R. (2019). Strategic management of grazing grassland systems to maintain and increase organic carbon in soils. CO2 Sequestration, 1–20.

  • Kondo, J., Hirobe, M., Yamada, Y., Undarmaa, J., Sakamoto, K., & Yoshikawa, K. (2012). Effects of Caragana microphylla patch and its canopy size on “islands of fertility” in a Mongolian grassland ecosystem. Landscape and Ecological Engineering, 8(1), 1–8.

    Article  Google Scholar 

  • Laik, R., Kumar, K., Das, D. K., & Chaturvedi, O. P. (2009). Labile soil organic matter pools in a calciorthent after 18 years of afforestation by different plantations. Applied Soil Ecology, 42(2), 71–78.

    Article  Google Scholar 

  • Lal, R., Kimble, J. M., Follett, R. F., & Stewart, B. A. (2001). Assessment methods for soil carbon (advances in soil science). 1st Edn., CRC Press, Boca Raton, FL., ISBN: 9781566704618.

  • Lewińska, K. E., Buchner, J., Bleyhl, B., Hostert, P., Yin, H., Kuemmerle, T., & Radeloff, V. C. (2021). Changes in the grasslands of the Caucasus based on cumulative endmember fractions from the full 1987–2019 landsat record. Science of Remote Sensing, 4, 100035.

    Article  Google Scholar 

  • Liu, D., Huang, Y., Yan, H., Jiang, Y., Zhao, T., & An, S. (2018). Dynamics of soil nitrogen fractions and their relationship with soil microbial communities in two forest species of northern China. PLoS ONE, 13(5), e0196567.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu, M., Han, G., & Zhang, Q. (2019). Effects of soil aggregate stability on soil organic carbon and nitrogen under land use change in an erodible region in Southwest China. International Journal of Environmental Research and Public Health, 16(20), 3809.

    Article  CAS  PubMed Central  Google Scholar 

  • Mainuri, Z. G., & Owino, J. O. (2013). Effects of land use and management on aggregate stability and hydraulic conductivity of soils within River Njoro Watershed in Kenya. International Soil and Water Conservation Research, 1(2), 80–87.

    Article  Google Scholar 

  • McClaran, M. P., Moore-Kucera, J., Martens, D. A., van Haren, J., & Marsh, S. E. (2008). Soil carbon and nitrogen in relation to shrub size and death in a semi-arid grassland. Geoderma, 145(1–2), 60–68.

    Article  CAS  Google Scholar 

  • Narantsetseg, A., Kang, S., & Ko, D. (2018). Livestock grazing and trampling effects on plant functional composition at three wells in the desert steppe of Mongolia. Journal of Ecology and Environment, 42, 1–8.

    Article  Google Scholar 

  • Noellemeyer, E., Frank, F., Alvarez, C., Morazzo, G., & Quiroga, A. (2008). Carbon contents and aggregation related to soil physical and biological properties under a land-use sequence in the semiarid region of central Argentina. Soil and Tillage Research, 99(2), 179–190.

    Article  Google Scholar 

  • Noumi, Z. (2015). Effects of exotic and endogenous shrubs on understory vegetation and soil nutrients in the south of Tunisia. Journal of Arid Land, 7(4), 481–487.

    Article  Google Scholar 

  • Noumi, Z., Abdallah, L., Touzard, B., & Chaieb, M. (2012). Acacia tortilis (Forssk) subsp raddiana (Savi) Brenan as a foundation species: a test from the arid zone of Tunisia. The Rangeland Journal, 34(1), 17–25.

    Article  Google Scholar 

  • Nuche, P., & Alados, C. L. (2018). Shrub interactions drive vegetation succession of subalpine grasslands under two climatic conditions. Journal of Plant Ecology, 11(2), 297–307.

    Article  Google Scholar 

  • Ostertag, R. (1998). Belowground effects of canopy gaps in a tropical wet forest. Ecology, 79(4), 1294–1304.

    Article  Google Scholar 

  • Prevedello, J. A., Almeida-Gomes, M., & Lindenmayer, D. B. (2018). The importance of scattered trees for biodiversity conservation: A global meta-analysis. Journal of Applied Ecology, 55(1), 205–214.

    Article  Google Scholar 

  • Rahmanian, S., Hejda, M., Ejtehadi, H., Farzam, M., Memariani, F., & Pyšek, P. (2021). Does the intensive grazing and aridity change the relations between the dominant shrub Artemisia kopetdaghensis and plants under its canopies? Ecology and Evolution, 11(20), 14115–14124.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rousset, O., & Lepart, J. (2000). Positive and negative interactions at different life stages of a colonizing species (Quercus humilis). Journal of Ecology, 88(3), 401–412.

    Article  Google Scholar 

  • Ruiz, T. G., Zaragoza, S. R., & Cerrato, R. F. (2008). Fertility islands around Prosopis laevigata and Pachycereus hollianus in the drylands of Zapotitlán Salinas, Mexico. Journal of Arid Environments, 72(7), 1202–1212.

    Article  Google Scholar 

  • Ruwanza, S., & Shackleton, C. M. (2016). Effects of the invasive shrub, Lantana camara, on soil properties in the Eastern Cape, South Africa. Weed Biology and Management, 16(2), 67–79.

    Article  Google Scholar 

  • Schalau, J. & Young, D. (2001). The natural resources of yavapai county. Arizona Cooperative Extension.

    Google Scholar 

  • Schönbach, P., Wan, H., Gierus, M., Bai, Y., Müller, K., Lin, L., Susenbeth, A., & Taube, F. (2011). Grassland responses to grazing: effects of grazing intensity and management system in an Inner Mongolian steppe ecosystem. Plant and Soil, 340(1), 103–115.

    Article  CAS  Google Scholar 

  • Singh, J. S., Raghubanshi, A. S., Singh, R. S., & Srivastava, S. C. (1989). Microbial biomass acts as a source of plant nutrients in dry tropical forest and savanna. Nature, 338(6215), 499–500.

    Article  Google Scholar 

  • Six, J. ΑΕΤ, Elliott, E. T., & Paustian, K. (2000). Soil macroaggregate turnover and microaggregate formation: A mechanism for C sequestration under no-tillage agriculture. Soil Biology and Biochemistry, 32(14), 2099–2103.

    Article  CAS  Google Scholar 

  • Six, J., Bossuyt, H., Degryze, S., & Denef, K. (2004). A history of research on the link between (micro) aggregates, soil biota, and soil organic matter dynamics. Soil and Tillage Research, 79(1), 7–31.

    Article  Google Scholar 

  • Six, J., Feller, C., Denef, K., Ogle, S., de Moraes Sa, J. C., & Albrecht, A. (2002). Soil organic matter, biota and aggregation in temperate and tropical soils-Effects of no-tillage. Agronomie, 22(7–8), 755–775.

    Article  Google Scholar 

  • Smit, C., Gusberti, M., & Müller-Schärer, H. (2006). Safe for saplings; safe for seeds? Forest Ecology and Management, 237(1–3), 471–477.

    Article  Google Scholar 

  • Smit, C., Vandenberghe, C., Den Ouden, J., & Müller-Schärer, H. (2007). Nurse plants, tree saplings and grazing pressure: Changes in facilitation along a biotic environmental gradient. Oecologia, 152(2), 265–273.

    Article  PubMed  Google Scholar 

  • Soliveres, S., & Eldridge, D. J. (2014). Do changes in grazing pressure and the degree of shrub encroachment alter the effects of individual shrubs on understorey plant communities and soil function? Functional Ecology, 28(2), 530–537.

    Article  PubMed  PubMed Central  Google Scholar 

  • Stavi, I., Lavee, H., Ungar, E. D., & Sarah, P. (2009). Ecogeomorphic feedbacks in semiarid rangelands: A review. Pedosphere, 19(2), 217–229.

    Article  Google Scholar 

  • Teague, R., & Kreuter, U. (2020). Managing grazing to restore soil health, ecosystem function, and ecosystem services. Frontiers in Sustainable Food Systems, 4, 534187.

    Article  Google Scholar 

  • Wang, H., Liu, S. R., Mo, J. M., Wang, J. X., Makeschin, F., & Wolff, M. (2010). Soil organic carbon stock and chemical composition in four plantations of indigenous tree species in subtropical China. Ecological Research, 25(6), 1071–1079.

    Article  CAS  Google Scholar 

  • Wang, X., He, X., Williams, J. R., Izaurralde, R. C., & Atwood, J. D. (2005). Sensitivity and uncertainty analyses of crop yields and soil organic carbon simulated with EPIC. Transactions of the ASAE, 48(3), 1041–1054.

    Article  CAS  Google Scholar 

  • Webber, D. F., Mickelson, S. K., Ahmed, S. I., Russell, J. R., Powers, W. J., & Schultz, R. C. (2010). Livestock grazing and vegetative filter strip buffer effects on runoff sediment, nitrate, and phosphorus losses. Journal of Soil and Water Conservation, 65, 34–41.

    Article  Google Scholar 

  • Whitehead, D. (2020). Management of Grazed Landscapes to Increase Soil Carbon Stocks in Temperate, Dryland Grasslands. Frontiers in Sustainable Food Systems, 4, 197. https://doi.org/10.3389/fsufs.2020.585913

    Article  Google Scholar 

  • Wu, G. L., Du, G. Z., Liu, Z. H., & Thirgood, S. (2009). Effect of fencing and grazing on a Kobresia-dominated meadow in the Qinghai-Tibetan Plateau. Plant and Soil, 319(1), 115–126.

    Article  CAS  Google Scholar 

  • Xie, L., Soliveres, S., Allan, E., Zhang, G., Man, L., Mei, X., Li, Y., Wang, Y., & Ma, C. (2021). Woody species have stronger facilitative effects on soil biota than on plants along an aridity gradient. Applied Vegetation Science, 32(3), e13034.

    Google Scholar 

  • Xie, Y., & Wittig, R. (2004). The impact of grazing intensity on soil characteristics of Stipa grandis and Stipa bungeana steppe in northern China (autonomous region of Ningxia). Acta Oecologica, 25(3), 197–204.

    Article  Google Scholar 

  • Xu, C., Holmgren, M., Van Nes, E. H., Maestre, F. T., Soliveres, S., Berdugo, M., Kéfi, S., Marquet, P. A., Abades, S., & Scheffer, M. (2015). Can we infer plant facilitation from remote sensing? A test across global drylands. Ecological Applications, 25(6), 1456–1462.

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu, S., Jagadamma, S., & Rowntree, J. (2018). Response of grazing land soil health to management strategies: A summary review. Sustainability, 10(12), 4769.

    Article  Google Scholar 

  • Zagal, E., Muñoz, C., Quiroz, M., & Córdova, C. (2009). Sensitivity of early indicators for evaluating quality changes in soil organic matter. Geoderma, 151(3/4), 191–198.

    Article  CAS  Google Scholar 

  • Zandi, L., Erfanzadeh, R., & Joneidi Jafari, H. (2017). Rangeland use change to agriculture has different effects on soil organic matter fractions depending on the type of cultivation. Land Degradation & Development, 28(1), 175–180.

    Article  Google Scholar 

  • Zhan-Yuan, Y. U., Fu-Sheng, C. H. E. N., De-Hui, Z. E. N. G., Qiong, Z. H. A. O., & Guang-Sheng, C. H. E. N. (2008). Soil inorganic nitrogen and microbial biomass carbon and nitrogen under pine plantations in Zhanggutai sandy soil. Pedosphere, 18(6), 775–784.

    Article  Google Scholar 

  • Zhou, M., Liu, C., Wang, J., Meng, Q., Yuan, Y., Ma, X., & Du, W. (2020). Soil aggregates stability and storage of soil organic carbon respond to cropping systems on Black Soils of Northeast China. Scientific Reports, 10(1), 1–13.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Erfanzadah.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barzegaran, F., Erfanzadah, R. & Saber Amoli, S. The effect of woody plants on the understory soil parameters is different between grazed and ungrazed areas. COMMUNITY ECOLOGY 23, 187–196 (2022). https://doi.org/10.1007/s42974-022-00090-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42974-022-00090-x

Keywords

Navigation