Skip to main content
Log in

Soil organic carbon stock and chemical composition in four plantations of indigenous tree species in subtropical China

  • Original Article
  • Published:
Ecological Research

Abstract

Subtropical China has more than 60% of the total plantation area in China and over 70% of these subtropical plantations are composed of pure coniferous species. In view of low ecosystem services and ecological instability of pure coniferous plantations, indigenous broadleaf plantations are being advocated as a prospective silvicultural management for substituting in place of large coniferous plantations in subtropical China. However, little information is known about the effects of tree species conversion on stock and stability of soil organic carbon (SOC). The four adjacent monospecific plantations were selected to examine the effects of tree species on the stock and chemical composition of SOC using elemental analysis and solid-state 13C nuclear magnetic resonance (NMR) spectroscopy. One coniferous plantation was composed of Pinus massoniana (PM), and the three broadleaf plantations were Castanopsis hystrix (CH), Michelia macclurei (MM), and Mytilaria laosensis (ML). We found that SOC stock differed significantly among the four plantations in the upper (0–10 cm) layer, but not in the underneath (10–30 cm) layer. SOC stocks in the upper (0–10 cm) layer were 11, 19, and 18% higher in the CH, MM, and ML plantations than in the PM plantation. The differences in SOC stock among the four plantations were largely attributed to fine root rather than aboveground litterfall input. However, the soils in the broadleaf plantations contained more decomposable C proportion, indicated by lower percentage of alkyl C, higher percentage of O-alkyl C and lower alkyl C/O-alkyl C ratio compared to those in the PM plantation. Our findings highlight that future strategy of tree species selection for substituting in place of large coniferous plantations in subtropical China needs to consider the potential effects of tree species on the chemical composition in addition to the quantity of SOC stock.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alexeyev V, Birdsey R, Stakanov V, Korotkov I (1995) Carbon in vegetation of Russian forests: methods to estimate storage and geographical distribution. Water Air Soil Pollut 82:271–282. doi:10.1007/BF01182840

    Article  CAS  Google Scholar 

  • Amacher MC, Hendersen RE, Breithaupt MD, Seale CL, LaBauve JM (1990) Unbuffered and buffered salt methods for exchangeable cations and effective cation-exchange capacity. Soil Sci Soc Am J 54:1036–1042

    Article  CAS  Google Scholar 

  • Augusto L, Ranger L, Binkley D, Rothe A (2002) Impact of several common tree species of European temperate forests on soil fertility. Ann For Sci 59:233–253. doi:10.1051/forest:2002020

    Article  Google Scholar 

  • Baldock JA, Preston CM (1995) Chemistry of carbon decomposition processes in forests as revealed by solid-state carbon-13 nuclear magnetic resonance. In: McFee WW, Kelly JM (eds) Carbon forms and functions in forest soils. Soil Sci Soc Am, Madison, pp 89–117

    Google Scholar 

  • Baldock JA, Oades JM, Nelson PN, Skene TM, Golchin A, Clarke P (1997) Assessing the extent of decomposition of natural organic materials using solid-state 13C NMR spectroscopy. Aust J Soil Res 35:1061–1683. doi:10.1071/S97004

    Article  Google Scholar 

  • Balesdent J, Balabane M (1996) Major contribution of roots to soil carbon storage inferred from maize cultivated soils. Soil Biol Biochem 9:1261–1263. doi:10.1016/0038-0717(96)00112-5

    Article  Google Scholar 

  • Beets PN, Oliver GR, Clinton PW (2002) Soil carbon protection in podocarp/hardwood forest and effects of conversion to pasture and exotic pine forest. Environ Pollut 116:63–73. doi:10.1016/S0269-7491(01)00248-2

    Article  Google Scholar 

  • Berg B (2000) Litter decomposition and organic matter turnover in northern forest soils. For Ecol Manage 133:13–22. doi:10.1016/S0378-1127(99)00294-7

    Article  Google Scholar 

  • Blagodatskaya EV, Anderson TH (1998) Interactive effects of pH and substrate quality on the fungal to bacteria ratio and qCO2 of microbial communities in forest soils. Soil Biol Biochem 30:1269–1295. doi:10.1016/S0038-0717(98)00050-9

    Article  CAS  Google Scholar 

  • Bremner JM (1996) Nitrogen-total. In: Sparks DL (ed) Methods of soil analysis. SSSA Book Ser, Madison, pp 1085–1122

    Google Scholar 

  • Carnevalea NJ, Montagnini F (2002) Facilitating regeneration of secondary forests with the use of mixed and pure plantations of indigenous tree species. For Ecol Manage 163:217–227. doi:10.1016/S0378-1127(01)00581-3

    Article  Google Scholar 

  • Chen CR, Xu ZH, Mathers NJ (2004) Soil carbon pools in adjacent natural and plantation forests of subtropical Australia. Soil Sci Soc Am J 68:282–291

    CAS  Google Scholar 

  • Crow SE, Lajtha K, Filley TR, Swanston CW, Bowden RD, Caldwell BA (2009) Sources of plant-derived carbon and stability of organic matter in soil: implications for global change. Glob Chang Biol 15:2003–2019. doi:10.1111/j.1365-2486.2009.01850.x

    Article  Google Scholar 

  • Eviner VT, Chapin FS III (2003) Functional matrix: a conceptual framework for predicting multiple plant effects on ecosystem processes. Annu Rev Ecol Evol Syst 34:455–485. doi:10.1146/annurev.ecolsys.34.011802.132342

    Article  Google Scholar 

  • Fairley RI, Alexander IJ (1985) Methods of calculating fine root production in forests. In: Fitter AH (ed) Ecological interactions in soil. Brit Ecol Soc, Oxford, pp 37–42

    Google Scholar 

  • Fan S, Gloor M, Mahlman J, Pacala S, Sarmiento J, Takahashi T, Tans P (1998) A large terrestrial carbon sink in North America implied by atmospheric and oceanic carbon dioxide data and models. Science 282:442–446. doi:10.1126/science.282.5388.442

    Article  CAS  PubMed  Google Scholar 

  • Fang H, Mo JM, Peng SL, Li ZA, Wang H (2007) Cumulative effects of nitrogen additions on litter decomposition in three tropical forests in southern China. Plant Soil 297:233–242. doi:10.1007/s11104-007-9339-9

    Article  CAS  Google Scholar 

  • FAO (2007) State of the world’s forests 2007. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • Fischer H, Bens O, Hüttl R (2002) Veränderung von Humusform, -vorrat und -verteilung im Zuge von Waldumbau-Massnahmen im nordostdeutschen Tiefland. Forstwissenschaftliches Centralblatt 121:322–334

    Article  CAS  Google Scholar 

  • Hendricks JJ, Hendrick RL, Wilson CA, Mitchell RJ, Pecot SD, Guo DL (2006) Assessing the patterns and controls of fine root dynamics: an empirical test and methodological review. J Ecol 94:40–57. doi:10.1111/j.1365-2745.2005.01067.x

    Article  Google Scholar 

  • Huang ZQ, Xu ZH, Chen CG, Boyd S (2008) Changes in soil carbon during the establishment of a hardwood plantation in subtropical Australia. For Ecol Manage 254:46–55. doi:10.1016/j.foreco.2007.07.021

    Article  Google Scholar 

  • IPCC (2007) Climate change 2007: an assessment of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Jandl R, Lindner M, Vesterdal L, Bauwens B, Baritz R, Hagedorn F, Johnson DW, Minkkinen K, Byrne KA (2007) How strongly can forest management influence soil carbon sequestration? Geoderma 137:253–268. doi:10.1016/j.geoderma.2006.09.003

    Article  CAS  Google Scholar 

  • Jastrow JD, Miller RM, Lussenhop J (1998) Contributions of interacting biological mechanisms to soil aggregate stabilization in restored prairie. Soil Biol Biochem 30:905–916. doi:10.1016/S0038-0717(97)00207-1

    Article  CAS  Google Scholar 

  • Johnston CA, Groffman P, Breshears DD, Cardon ZG, Currie W, Emanuel W, Gaudinski J, Jackson RB, Lajtha K, Nadelhoffer K Jr, Nelson D, Post WM, Retallack G, Wielopolski L (2004) Carbon cycling in soil. Front Ecol Environ 2:522–528

    Article  Google Scholar 

  • Kasel S, Bennett TL (2007) Land-use history, forest conversion, and soil organic carbon in pine plantations and native forests of south eastern Australia. Geoderma 137:401–413. doi:10.1016/j.geoderma.2006.09.002

    Article  CAS  Google Scholar 

  • Kögel-Knabner I (2002) The macromolecular organic composition of plant and microbial residues as inputs to soil organic matter. Soil Biol Biochem 34:139–162. doi:10.1016/S0038-0717(01)00158-4

    Article  Google Scholar 

  • Ladegaard-Pedersen P, Elberling B, Vesterdal L (2005) Soil carbon stocks, mineralization rates, and CO2 effluxes under 10 tree species on contrasting soil types. Can J For Res 35:1277–1284. doi:10.1139/x05-045

    Article  CAS  Google Scholar 

  • Lal R (2005) Forest soils and carbon sequestration. For Ecol Manage 220:242–258. doi:10.1016/j.foreco.2005.08.015

    Article  Google Scholar 

  • Liang RL (2007) Current situation of Guangxi indigenous broadleaf species resource and their development counter measures. Guangxi For Sci 36:5–9

    Google Scholar 

  • Liang RL, Wen HH (1992) Application of fertilizers in Pinus massoniana plantations in Dapingshan. Guangxi Prov For Res 5:138–142

    Google Scholar 

  • Lorenz K, Lal R, Preston CM, Nierop KGJ (2007) Strengthening the soil organic carbon pool by increasing contributions from recalcitrant aliphatic bio(macro)molecules. Geoderma 142:1–10. doi:10.1016/j.geoderma.2007.07.013

    Article  CAS  Google Scholar 

  • Lugo AE, Brown S (1993) Management of tropical soils as sinks or sources of atmospheric carbon. Plant Soil 149:27–41. doi:10.1007/BF00010760

    Article  CAS  Google Scholar 

  • Lützow MV, Kögel-Knabner I, Ekschmitt K, Matzner E, Guggenberger G, Marschner B, Flessa H (2006) Stabilization of organic matter in temperate soils: mechanisms and their relevance under different soil conditions––a review. Eur J Soil Sci 57:426–445. doi:10.1111/j.1365-2389.2006.00809.x

    Article  Google Scholar 

  • Mareschal L, Bonnaud P, Turpault PM, Ranger J (2009) Impact of common European tree species on the chemical and physicochemical properties of fine earth: an unusual pattern. Eur J Soil Sci 61:14–23. doi:10.1111/j.1365-2389.2009.01206.x

    Article  Google Scholar 

  • Mulder J, De Wit HA, Boonen HWJ, Bakken LR (2001) Increased levels of aluminum in forest soils: effects on the stores of soil organic carbon. Water Air Soil Pollut 130:989–994. doi:10.1023/A:1013987607826

    Article  Google Scholar 

  • Nelson DW, Sommers LE (1996) Total carbon, organic carbon, and organic matter. In: Sparks DL (ed) Methods of soil analysis. Soil Sci Soc Am Inc., Madison, pp 961–1010

    Google Scholar 

  • Norby RJ, Ledford J, Reilly CD, Miller NE, O’Neill EG (2004) Fine root production dominates response of a deciduous forest to atmospheric CO2 enrichment. Proc Natl Acad Sci 101:9689–9693. doi:10.1073/pnas.0403491101

    Article  CAS  PubMed  Google Scholar 

  • Oades JM (1995) An overview of processes affecting the cycling of organic carbon in soils. In: Zepp G, Sonntag CH (eds) The role of non-living organic matter in the earth’s carbon cycle. Dahlem Workshop Reports. Wiley, New York, pp 293–303

    Google Scholar 

  • Oades JM, Waters AG, Vassallo AM, Wilson MA, Jones GP (1988) Influence of management on the composition of organic matter in a red-brown earth as shown by 13C nuclear magnetic resonance. Aust J Soil Res 26:289–299. doi:10.1071/SR9880289

    Article  CAS  Google Scholar 

  • Paquette A, Messier C (2010) The role of plantations in managing the world’s forests in the Anthropocene. Front Ecol Environ 8:27–34. doi:10.1890/080116

    Article  Google Scholar 

  • Peng SL, Wang DX, Zhao H, Yang T (2008) Discussion the status quality of plantation and near nature forestry management in China. J Northwest For Univ 23:184–188

    Google Scholar 

  • Post W, Kwon K (2000) Soil carbon sequestration and land-use change: processes and potential. Glob Chang Biol 6:317–328. doi:10.3334/CDIAC/tcm.009

    Article  Google Scholar 

  • Quideau SA, Chadwick OA, Benesi A, Grahama RC, Anderson MA (2001) A direct link between forest vegetation type and soil organic matter composition. Geoderma 104:41–60. doi:10.1016/S0016-7061(01)00055-6

    Article  CAS  Google Scholar 

  • Rasse DP, Rumpel C, Dignac MF (2005) Is soil carbon mostly root carbon? Mechanisms for a specific stabilisation. Plant Soil 269:341–356. doi:10.1007/s11104-004-0907-y

    Article  CAS  Google Scholar 

  • Russell AE, Cambardella CA, Ewel JJ, Parkin TB (2004) Species, rotation, and life-form diversity effects on soil carbon in experimental tropical ecosystems. Ecol Appl 14:47–60. doi:10.1890/02-5299

    Article  Google Scholar 

  • Russell AE, Raich JW, Valverde-Barrantes OJ, Fisher RF (2007) Tree species effects on soil properties in experimental plantations in tropical moist forest. Soil Sci Soc Am J 71:1389–1397. doi:10.2136/sssaj2006.0069

    Article  CAS  Google Scholar 

  • Schmidt MWI, Knicker H, Hatcher PG, Kögel-Knabner I (1997) Improvement of 13C and 15N CPMAS NMR spectra of bulk soils, particle size fractions and organic material by treatment with 10% hydrofluoric acid. Eur J Soil Sci 48:319–328. doi:10.1111/j.1365-2389.1997.tb00552.x

    Article  Google Scholar 

  • Schulp CJE, Nabuurs G, Verburg PH, de Waal RW (2008) Effect of tree species on carbon stocks in forest floor and mineral soil and implications for soil carbon inventories. For Ecol Manage 256:482–490. doi:10.1016/j.foreco.2008.05.007

    Article  Google Scholar 

  • SFA (State Forestry Administration) (2007) China’s forestry 1999–2005. China Forestry Publishing House, Beijing

    Google Scholar 

  • Soil Survey Staff of USDA (2006) Keys to soil taxonomy. US Department of Agriculture (USDA), Natural Resources Conservation Service, Washington, DC

    Google Scholar 

  • Spielvogel S, Prietzel J, Kögel-Knabner I (2006) Soil organic matter changes in a spruce ecosystem 25 years after disturbance. Soil Sci Soc Am J 70:2130–2145. doi:10.2136/sssaj2005.0027

    Article  CAS  Google Scholar 

  • State Soil Survey Service of China (1998) China soil. China Agricultural Press, Beijing

    Google Scholar 

  • Tisdali JM, Oades JM (1979) Stabilisation of soil aggregates by the root systems of ryegrass. Aust J Soil Res 17:429–441. doi:10.1071/SR9790429

    Article  Google Scholar 

  • Ussiri DAN, Johnson CE (2003) Characterization of organic matter in a northern hardwood forest soil by 13C NMR spectroscopy and chemical methods. Geoderma 111:123–149. doi:10.1016/S0016-7061(02)00257-4

    Article  CAS  Google Scholar 

  • Vesterdal L, Raulund-Rasmussen K (1998) Forest floor chemistry under seven tree species along a soil fertility gradient. Can J For Res 28:1636–1647. doi:10.1139/cjfr-28-11-1636

    Article  CAS  Google Scholar 

  • Vesterdal L, Schmidt IK, Callesen I, Nilsson LO, Gundersen P (2008) Carbon and nitrogen in forest floor and mineral soil under six common European tree species. For Ecol Manage 255:35–48. doi:10.1016/j.foreco.2007.08.015

    Article  Google Scholar 

  • Vogt KA, Persson H (1991) Measuring growth and development of roots. In: Lassoie JP, Hinckley TM (eds) Techniques and approaches in forest tree ecophysiology. CRC Press, Boca Raton, pp 477–501

    Google Scholar 

  • Zhang QS, Zak JC (1995) Effects of gap size on litter decomposition and microbial activity in a subtropical forest. Ecology 76:2196–2204. doi:10.2307/1941693

    Article  Google Scholar 

  • Zinn YL, Resck DVS, da Silva JE (2002) Soil organic carbon as affected by afforestation with Eucalyptus and Pinus in the Cerrado region of Brazil. For Ecol Manage 166:285–294. doi:10.1016/S0378-1127(01)00682-X

    Article  Google Scholar 

Download references

Acknowledgments

We thank Drs. Yunting Fang, Zuomin Shi, Pengsen Sun, Yuandong Zhang, and Pablo Peri, the editors, and two anonymous reviewers for their valuable comments and suggestions on the manuscript. We are grateful to Riming He, Ji Zeng, Angang Ming, and Jixin Tang for their help with field sampling. We also gratefully acknowledge the support from the Experimental Center of Tropical Forestry, the Chinese Academy of Forestry. This study was funded by China’s National Natural Science Foundation (No. 30590383) and the Ministry of Finance (No. 200804001) and the Ministry of Science and Technology (No. 2006BAD03A04).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shi-Rong Liu.

About this article

Cite this article

Wang, H., Liu, SR., Mo, JM. et al. Soil organic carbon stock and chemical composition in four plantations of indigenous tree species in subtropical China. Ecol Res 25, 1071–1079 (2010). https://doi.org/10.1007/s11284-010-0730-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11284-010-0730-2

Keywords

Navigation