Skip to main content

Advertisement

Log in

Cleaner production of ammonium paratungstate by membrane electrolysis-precipitation of sodium tungstate solution

  • Original Paper
  • Published:
Tungsten Aims and scope Submit manuscript

Abstract

The production of ammonium paratungstate (APT) is riddled with the generation of wastewater, which causes environmental problems. To solve the problem of wastewater generation at source, a membrane electrolysis-NH3⋅H2O precipitation method, which prevents wastewater generation and recycles the reagents used in the process, was proposed and investigated in this study. The electrolysis process was investigated based on parameters such as initial cathodic and anodic NaOH concentrations, and current density. The results showed that an increase in current density and initial cathodic NaOH concentration and a decrease in the initial anodic NaOH concentration would enhance the separation of tungsten and sodium. The optimum condition was found at a current density of 666 A•m−2, initial anodic and cathodic NaOH concentrations of 69 g• L−1 and 40 g• L−1, with a current efficiency of 75.40%, and energy consumption for producing 1 ton of NaOH was 2184 kW• \(\mathrm{h}\). The precipitation process was investigated based on the acidic high W/Na molar ratio solution obtained by the electrolysis process with NH3⋅H2O as the precipitant. Parameters such as excessive coefficient, temperature, and W/Na molar ratio were studied. The result showed that the variation of excessive coefficient and solution temperature had an opposite effect on the purity of the APT, while an increase in the W/Na molar ratio would increase the product purity. The precipitation product obtained had a purity of 99.6% and was characterized using X-ray diffraction, inductively coupled plasma, and scanning electron microscopy. The methods proposed in this study could provide fundamental information for the design of a cleaner APT production process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Trasorras JRL, Wolfe TA, Knabl W, Venezia C, Lemus R, Lassner E, Schubert WD, Lüderitz E, Wolf H. Tungsten, tungsten alloys, and tungsten compounds. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA; 2016. p. 29.

    Google Scholar 

  2. Lassner E, Schubert WD. Tungsten: properties, chemistry, technology of the element, alloys and chemical compounds. New York: Kluwer Academic/Plenum Publishers; 1999. p. 302.

    Book  Google Scholar 

  3. Gunn G. Critical metals handbook. New York: Wiley; 2014. p. 385.

    Book  Google Scholar 

  4. British Geological Survey. Tungsten. https://www2.bgs.ac.uk/mineralsuk/download/mineralProfiles/tungsten_profile.pdf. Accessed 18 Nov 2021

  5. Zhao ZW, Xiao LP, Sun F, Huo GS, Li HG. Study on removing mo from tungstate solution by activated carbon loaded with copper. Int J Refract Metal Hard Mater. 2010;28(4):503.

    Article  CAS  Google Scholar 

  6. Chen Y, Guo X, Wang Q, Tian Q, Huang S, Zhang J. Tungsten and arsenic substance fow analysis of a hydrometallurgical process for tungsten extracting from wolframite. Tungsten. 2021;3(3):348.

    Article  Google Scholar 

  7. US Geological Survey. Tungsten. https://www.usgs.gov/centers/national-minerals-information-center/tungsten-statistics-and-information. Accessed 20 Nov 2021.

  8. Gong D, Zhou KG, Peng CH, Li JJ, Chen W. Sequential extraction of tungsten from scheelite through roasting and alkaline leaching. Miner Eng. 2019;132:238.

    Article  CAS  Google Scholar 

  9. Lassner E, Schubert WD, Lüderitz E. Tungsten alloys, and tungsten compounds. Weinheim: Wiley-VCH Verlag Gmb H & Co., KGaA; 2012. p. 498.

    Google Scholar 

  10. Shen L, Li X, Lindberg D, Taskinen P. Tungsten extractive metallurgy: a review of processes and their challenges for sustainability. Miner Eng. 2019;142: 105934.

    Article  CAS  Google Scholar 

  11. Zhao ZW, Li JT, Wang SB, Li HG, Liu MS, Sun PM, Li YJ. Extracting tungsten from scheelite concentrate with caustic soda by autoclaving process. Hydrometallurgy. 2011;108(1–2):152.

    Article  CAS  Google Scholar 

  12. Zhang WJ, Li JT, Zhao ZW. Leaching kinetics of scheelite with nitric acid and phosphoric acid. Int J Refract Metal Hard Mater. 2015;52:78.

    Article  Google Scholar 

  13. Sun PM, Li HG, Li YJ, Zhao ZW, Huo GS, Sun SM, Liu MS, Huo GS, Sun ZM, Liu MS. Decomposing scheelite and scheelite-wolframite mixed concentrate by caustic soda digestion. J Cent South Univ Technol. 2003;10(4):297.

    Article  CAS  Google Scholar 

  14. Li YL, Yang JH, Zhao ZW. Recovery of tungsten and molybdenum from low-grade scheelite. JOM. 2017;69(10):1958.

    Article  CAS  Google Scholar 

  15. Martins JP, Martins F. Soda ash leaching of scheelite concentrates: the effect of high concentration of sodium carbonate. Hydrometallurgy. 1997;46(1–2):191.

    Article  CAS  Google Scholar 

  16. Liu L, Xue J. A green leaching method of decomposing synthetic CaWO4 by HCl-H3PO4 in tungsten producing process. Adv Mater Sci Environ Energy Technol. 2015;253:157.

    CAS  Google Scholar 

  17. Gaur RPS. Modern hydrometallurgical production methods for tungsten. JOM. 2006;58:45.

    Article  CAS  Google Scholar 

  18. Martins JI, Moreira A, Costa SC. Leaching of synthetic scheelite by hydrochloric acid without the formation of tungstic acid. Hydrometallurgy. 2003;70(1–3):131.

    Article  CAS  Google Scholar 

  19. Liu L, Xue JL, Liu K, Zhu J, Wang ZJ. Complex leaching process of scheelite in hydrochloric and phosphoric solutions. JOM. 2016;68(9):2455.

    Article  CAS  Google Scholar 

  20. Wan LS, Zhao LF, Li HC. The advance and development of APT’s environment friendly smelting technology in Zhangyuan Tungsten Co., Ltd, 2012. China Tungsten Ind. 2012;27(1):47.

    Google Scholar 

  21. Zhang QX, Zhao QS. Tungsten and molybdenum metallurgy. Beijing: Metallurgical Industry Press; 2005. p. 4.

    Google Scholar 

  22. Li JT, Zhao ZW. Kinetics of scheelite concentrate digestion with sulfuric acid in the presence of phosphoric acid. Hydrometallurgy. 2016;163:55.

    Article  CAS  Google Scholar 

  23. Kalpakli AO, Ilhan S, Kahruman C, Yusufoglu I. Dissolution behavior of calcium tungstate in oxalic acid solutions. Hydrometallurgy. 2012;121:7.

    Article  Google Scholar 

  24. Li XB, Xu XM, Zhou QS, Qi TG, Liu GH, Peng ZH, Cui YF, Li JP. Ca3WO6 prepared by roasting tungsten-containing materials and its leaching performance. Int J Refract Metal Hard Mater. 2015;52:151.

    Article  CAS  Google Scholar 

  25. Li XB, Xu XM, Xu W, Zhou QS, Qi TG, Liu GH, Peng ZH, Cui YF, Li JP. Ca3-x(Fe, Mn)(x)WO6 (0 < x <= 1) prepared from tungsten-containing materials and its leachability in aqueous ammonium carbonate solution. Int J Refract Metal Hard Mater. 2016;57:93.

    Article  CAS  Google Scholar 

  26. Regel-Rosocka M. A review on methods of regeneration of spent pickling solutions from steel processing. J Hazard Mater. 2010;177(1–3):57.

    Article  CAS  Google Scholar 

  27. Paidar M, Fateev V, Bouzek K. Membrane electrolysis—history, current status and perspective. Electrochim Acta. 2016;209:737.

    Article  CAS  Google Scholar 

  28. Csicsovszki G, Kekesi T, Torok TI. Selective recovery of Zn and Fe from spent pickling solutions by the combination of anion exchange and membrane electrowinning techniques. Hydrometallurgy. 2005;77(1–2):19.

    Article  CAS  Google Scholar 

  29. Savari S, Sachdeva S, Kumar A. Electrolysis of sodium chloride using composite poly(styrene-co-divinylbenzene) cation exchange membranes. J Membr Sci. 2008;310(1–2):246.

    Article  CAS  Google Scholar 

  30. Melian-Martel N, Sadhwani JJ, Baez SOP. Saline waste disposal reuse for desalination plants for the chlor-alkali industry The particular case of pozo izquierdo SWRO desalination plant. Desalination. 2011;281:35.

    Article  CAS  Google Scholar 

  31. Kariduraganavar MY, Nagarale RK, Kittur AA, Kulkarni SS. Ion-exchange membranes: preparative methods for electrodialysis and fuel cell applications. Desalination. 2006;197(1–3):225.

    Article  CAS  Google Scholar 

  32. Bruggen BVD, Vandecasteele C, Gestel TVW, Doyen LR. A review of pressure-driven membrane processes in wastewater treatment and drinking water production. Environ Prog Sustain Energy. 2010;22(1):46.

    Google Scholar 

  33. Fischer R, Seidel H, Morgenstern P, Förster HJ, Thiele W, Krebs P. Treatment of process water containing heavy metals with a two-stage electrolysis procedure in a membrane electrolysis cell. Eng Life Sci. 2005;5(2):163.

    Article  CAS  Google Scholar 

  34. Faverjon F, Rakib M, Durand G. Electrochemical study of a hydrogen diffusion anode-membrane assembly for membrane electrolysis. Electrochim Acta. 2005;51(3):386.

    Article  CAS  Google Scholar 

  35. Xiao LS, Zhang QX, Gong BF, Huang SY. Separation of molybdenum from tungstate solution by a combination of moving packed bed and fluid bed ion-exchange techniques. Int J Refract Metal Hard Mater. 2001;19(3):145.

    Article  CAS  Google Scholar 

  36. Pan B, Du H, Wang SN, Wang HX, Liu B, Zhang Y. Cleaner production of ammonium poly-vanadate by membrane electrolysis of sodium vanadate solution: the effect of membrane materials and electrode arrangements. J Clean Prod. 2019;239:118129.

    Article  CAS  Google Scholar 

  37. Put JWV. Crystallisation and processing of ammonium paratungstate (APT). Int J Refract Met Hard Mater. 1995;13:61.

    Article  Google Scholar 

  38. Lu H, Li H, Chen Y, Liu H. A facile hydrothermal method to synthesize ammonium tungsten bronze nanoplatelets for NIR absorption. IOP Conf Ser Mater Sci Eng Shanghai. 2018;382:022062.

    Article  Google Scholar 

  39. Yan M, Gu H, Liu Z, Guo C, Liu S. Effective near-infrared absorbent: ammonium tungsten bronze nanocubes. RSC Adv. 2015;5(2):967.

    Article  CAS  Google Scholar 

  40. Xu G, Liu R, Yang Q, Yang C, Huang G, Xiong X. Preparation and characterization of Cr-doped tungsten oxide by liquid-liquid doping precursor. Mater Res Express. 2021;8(1): 016509.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by National Key R&D Program of China (Nos. 2020YFC1909703), the Natural Science Foundation of China (Nos. 52104403), HBIS Group Co., Ltd. Key R&D Program (No. 20210036), and Lv Liang Key R&D Program (No. 2020GXZDYF7).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Pan.

Ethics declarations

Conflict of interest

The authors declare no interest conflict.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Olayiwola, A.U., Du, H., Wang, SN. et al. Cleaner production of ammonium paratungstate by membrane electrolysis-precipitation of sodium tungstate solution. Tungsten 5, 145–159 (2023). https://doi.org/10.1007/s42864-022-00155-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42864-022-00155-4

Keywords

Navigation