Skip to main content
Log in

Effect of fluorine functional groups introduced into activated carbon aerogel by carbon tetrafluoride plasmas in supercapacitors

  • Original Article
  • Published:
Carbon Letters Aims and scope Submit manuscript

Abstract

Fluorine heteroatoms were introduced to increase the limited specific capacitances of electric double-layer capacitors (EDLCs), and the effects of the fluorine atoms were analyzed. To introduce the fluorine, a CF4 plasma treatment was used that introduced the fluorine atoms quickly. Among the fluorine functional groups in the F6-ACA framework, the semi-ionic C–F bonds induced rapid charge transfer and imparted pseudocapacitance. Consequently, we achieved a specific capacitance of 325.68 F/g for the F6-CA sample at 0.5 A/g. By analyzing the contributions of the electric double-layer capacitance and the pseudocapacitance, we determined that the contribution from the pseudocapacitance was 37.57%. A remarkable specific capacitance retention rate of 95.87% was obtained over 1000 charge/discharge cycles with a high current density of 3 A/g. Additionally, the semi-ionic C–F bonds reduced the charge transfer resistance (Rct) by 36.8%. Therefore, the specific capacitance was improved by the fluorine heteroatoms, and the semi-ionic C–F bonds played a pivotal role in this improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Huang W, Khalafallah D, Ouyang C, Zhi M, Hong Z (2023) Strategic N/P self-doped biomass-derived hierarchical porous carbon for regulating the supercapacitive performances. Renew Energy 202:1259–1272. https://doi.org/10.1016/j.renene.2022.12.032

    Article  CAS  Google Scholar 

  2. Sun J, Zhang J, Shang M, Zhang M, Zhao X, Liu S, Liu X, Liu S, Yi X (2023) N, O co-doped carbon aerogel derived from sodium alginate/melamine composite for all-solid-state supercapacitor. Appl Surf Sci 608:155109. https://doi.org/10.1016/j.apsusc.2022.155109

    Article  CAS  Google Scholar 

  3. Lv C, Ma X, Guo R, Li D, Hua X, Jiang T, Li H, Liu Y (2023) Polypyrrole-decorated hierarchical carbon aerogel from liquefied wood enabling high energy density and capacitance supercapacitor. Energy 270:126830. https://doi.org/10.1016/j.energy.2023.126830

    Article  CAS  Google Scholar 

  4. Liu S, Shi D, Tu H, Yao X, Deng L, Xu D, Shao Y, Wu Y, Hao X (2021) Self-Supported Fluorine-Doped Boron Carbonitride Porous Aerogels for High-Performance Supercapacitors. Energy Technol 9:2100824. https://doi.org/10.1002/ente.202100824

    Article  CAS  Google Scholar 

  5. Jin T, Chen J, Wang C, Qian Y, Lu L (2020) Facile synthesis of fluorine-doped graphene aerogel with rich semi-ionic C–F bonds for high-performance supercapacitor application. J Mater Sci 55:12103–12113. https://doi.org/10.1007/s10853-020-04821-1

    Article  ADS  CAS  Google Scholar 

  6. Kim K-H, Lee JS, Ahn H-J (2021) Simultaneous effect of fluorine impregnation on highly mesoporous activated carbon used in high-performance electrical double layer capacitors. Appl Surf Sci 550:149266. https://doi.org/10.1016/j.apsusc.2021.149266

    Article  CAS  Google Scholar 

  7. Zuliani JE, Caguiat JN, Kirk DW, Jia CQ (2015) Considerations for consistent characterization of electrochemical double-layer capacitor performance. J Power Sources 290:136–143. https://doi.org/10.1016/j.jpowsour.2015.04.019

    Article  CAS  Google Scholar 

  8. Kwak CH, Lim C, Kim S, Lee Y-S (2022) Surface modification of carbon materials and its application as adsorbents. J Ind Eng Chem 116:21–31. https://doi.org/10.1016/j.jiec.2022.08.043

    Article  CAS  Google Scholar 

  9. Ju P, Zhu Z, Shao X, Wang S, Zhao C, Qian X, Zhao C (2017) 3D walnut-shaped TiO2/RGO/MoO2@Mo electrode exhibiting extraordinary supercapacitor performance. J Mater Chem A 5:18777–18785. https://doi.org/10.1039/C7TA05160C

    Article  CAS  Google Scholar 

  10. Xu S-Y, Lin L-Y, Lin H-Y (2020) Novel flexible solid-state pseudo-parallel pseudocapacitor with manganese oxide active material synthesized using electrodeposition. J Alloys Compd 843:156017. https://doi.org/10.1016/j.jallcom.2020.156017

    Article  CAS  Google Scholar 

  11. Lei D, Li X-D, Ma M-J, Kim D-Y, Noh J-H, Kim B-S (2023) Salt-activated phenolic resin/PAN-derived core-sheath nanostructured carbon nanofiber composites for capacitive energy storage. Carbon Lett 33:699–711. https://doi.org/10.1007/s42823-022-00451-6

    Article  Google Scholar 

  12. Zheng Y, Chen K, Jiang K, Zhang F, Zhu G, Xu H (2022) Progress of synthetic strategies and properties of heteroatoms-doped (N, P, S, O) carbon materials for supercapacitors. J Energy Storage 56:105995. https://doi.org/10.1016/j.est.2022.105995

    Article  Google Scholar 

  13. Abbas Q, Mirzaeian M, Ogwu AA, Mazur M, Gibson D (2020) Effect of physical activation/surface functional groups on wettability and electrochemical performance of carbon/activated carbon aerogels based electrode materials for electrochemical capacitors. Int J Hydrog Energy 45:13586–13595. https://doi.org/10.1016/j.ijhydene.2018.04.099

    Article  CAS  Google Scholar 

  14. Liu Y, Cheng X, Zhang S (2022) Hierarchically porous carbon derived from tobacco waste by one-step molten salt carbonization for supercapacitor. Carbon Lett 32:251–263. https://doi.org/10.1007/s42823-021-00271-0

    Article  Google Scholar 

  15. Karnan M, Hari Prakash K, Badhulika S (2022) Revealing the super capacitive performance of N-doped hierarchical porous activated carbon in aqueous, ionic liquid, and redox additive electrolytes. J Energy Storage 53:105189. https://doi.org/10.1016/j.est.2022.105189

    Article  Google Scholar 

  16. Zaman F, Ishaq MW, Munawar A, Younas U, Ali Z (2023) Aesculus indica-derived heteroatom-doped carbon as an electrode material for super-capacitor. Carbon Lett. https://doi.org/10.1007/s42823-023-00565-5

    Article  Google Scholar 

  17. Sim Y, Surendran S, Cha H, Choi H, Je M, Yoo S, Seok CD, Jung HY, Jeon C, Kim JD, Han M-K, Choi H, Sim U, Moon J (2022) Fluorine-doped graphene oxide prepared by direct plasma treatment for supercapacitor application. Chem Eng J 428:132086. https://doi.org/10.1016/j.cej.2021.132086

    Article  CAS  Google Scholar 

  18. Abbas Q, Mirzaeian M, Abdelkareem MA, Makky AA, Yadav A, Olabi AG (2022) Structural tuneability and electrochemical energy storage applications of resorcinol-formaldehyde-based carbon aerogels. Int J Energy Res 46:5478–5502. https://doi.org/10.1002/er.7556

    Article  CAS  Google Scholar 

  19. Du X, Yang H-m, Zhang Y-l, Hu Q-c, Li S-b, He W-x (2021) Synthesis of size-controlled carbon microspheres from resorcinol/formaldehyde for high electrochemical performance. New Carbon Mater 36:616–624. https://doi.org/10.1016/S1872-5805(21)60033-1

    Article  CAS  Google Scholar 

  20. Pekala R (1989) Organic aerogels from the polycondensation of resorcinol with formaldehyde. J Mater Sci 24:3221–3227. https://doi.org/10.1007/BF01139044

    Article  ADS  CAS  Google Scholar 

  21. Kim SJ, Hwang SW, Hyun SH (2005) Preparation of carbon aerogel electrodes for supercapacitor and their electrochemical characteristics. J Mater Sci 40:725–731. https://doi.org/10.1007/s10853-005-6313-x

    Article  ADS  CAS  Google Scholar 

  22. Fang B, Binder L (2006) A modified activated carbon aerogel for high-energy storage in electric double layer capacitors. J Power Sources 163:616–622. https://doi.org/10.1016/j.jpowsour.2006.09.014

    Article  CAS  Google Scholar 

  23. Aghabararpour M, Motahari S, Sanaee Z, Ghahreman A (2019) Fabrication of binder-free electrode using reinforced resorcinol formaldehyde-based carbon aerogels. J Nanopart Res 21:178. https://doi.org/10.1007/s11051-019-4624-0

    Article  CAS  Google Scholar 

  24. Mirzaeian M, Abbas Q, Gibson D, Mazur M (2019) Effect of nitrogen doping on the electrochemical performance of resorcinol-formaldehyde based carbon aerogels as electrode material for supercapacitor applications. Energy 173:809–819. https://doi.org/10.1016/j.energy.2019.02.108

    Article  CAS  Google Scholar 

  25. Xu Y, Ren B, Wang S, Dong X, Zhang L, Liu Z (2019) Carbon aerogels with oxygen-containing surface groups for use in supercapacitors. Solid State Ion 339:115005. https://doi.org/10.1016/j.ssi.2019.115005

    Article  CAS  Google Scholar 

  26. Wang S, Miao J, Liu M, Zhang L, Liu Z (2021) Hierarchical porous N-doped carbon xerogels for high performance CO2 capture and supercapacitor. Colloids Surf A: Physicochem Eng Asp 616:126285. https://doi.org/10.1016/j.colsurfa.2021.126285

    Article  CAS  Google Scholar 

  27. Lu C, Huang YH, Hong JS, Wu YJ, Li J, Cheng JP (2018) The effects of melamine on the formation of carbon xerogel derived from resorcinol and formaldehyde and its performance for supercapacitor. J Colloid Interface Sci 524:209–218. https://doi.org/10.1016/j.jcis.2018.04.006

    Article  ADS  CAS  PubMed  Google Scholar 

  28. Wang K, Chen Y, Liu Y, Zhang H, Shen Y, Pu Z, Qiu H, Li Y (2022) Plasma boosted N, P, O co-doped carbon microspheres for high performance Zn ion hybrid supercapacitors. J Alloys Compd 901:163588. https://doi.org/10.1016/j.jallcom.2021.163588

    Article  CAS  Google Scholar 

  29. Huang S, Ma D-D, Wang X, Shi Y, Xun R, Chen H, Guan H, Tong Y (2022) A space-sacrificed pyrolysis strategy for boron-doped carbon spheres with high supercapacitor performance. J Colloid Interface Sci 608:334–343. https://doi.org/10.1016/j.jcis.2021.09.179

    Article  ADS  CAS  PubMed  Google Scholar 

  30. Wang T, Zang X, Wang X, Gu X, Shao Q, Cao N (2020) Recent advances in fluorine-doped/fluorinated carbon-based materials for supercapacitors. Energy Storage Mater 30:367–384. https://doi.org/10.1016/j.ensm.2020.04.044

    Article  Google Scholar 

  31. Ha S, Lim C, Lee Y-S (2022) Fluorination methods and the properties of fluorinated carbon materials for use as lithium primary battery cathode materials. J Ind Eng Chem 111:1–17. https://doi.org/10.1016/j.jiec.2022.03.044

    Article  CAS  Google Scholar 

  32. Kim M-H, Yang J-H, Kang Y-M, Park S-M, Han JT, Kim K-B, Roh KC (2014) Fluorinated activated carbon with superb kinetics for the supercapacitor application in nonaqueous electrolyte. Colloids Surf A: Physicochem Eng Asp 443:535–539. https://doi.org/10.1016/j.colsurfa.2013.12.020

    Article  CAS  Google Scholar 

  33. Zhou H, Peng Y, Wu HB, Sun F, Yu H, Liu F, Xu Q, Lu Y (2016) Fluorine-rich nanoporous carbon with enhanced surface affinity in organic electrolyte for high-performance supercapacitors. Nano Energy 21:80–89. https://doi.org/10.1016/j.nanoen.2015.12.016

    Article  CAS  Google Scholar 

  34. An H, Li Y, Long P, Gao Y, Qin C, Cao C, Feng Y, Feng W (2016) Hydrothermal preparation of fluorinated graphene hydrogel for high-performance supercapacitors. J Power Sources 312:146–155. https://doi.org/10.1016/j.jpowsour.2016.02.057

    Article  CAS  Google Scholar 

  35. Cao N, Wang T, Boukherroub R, Cai Y, Qin Y, Li F, Liu P, Shao Q, Liu M, Zang X (2022) Facile and secure synthesis of porous partially fluorinated graphene employing weakly coordinating anion for enhanced high-performance symmetric supercapacitor. J Mater 8:113–122. https://doi.org/10.1016/j.jmat.2021.04.012

    Article  Google Scholar 

  36. Jung M-J, Jeong E, Kim S, Lee SI, Yoo J-S, Lee Y-S (2011) Fluorination effect of activated carbon electrodes on the electrochemical performance of electric double layer capacitors. J Fluor Chem 132:1127–1133. https://doi.org/10.1016/j.jfluchem.2011.06.046

    Article  CAS  Google Scholar 

  37. Jung M-J, Jeong E, Lee Y-S (2015) The surface chemical properties of multi-walled carbon nanotubes modified by thermal fluorination for electric double-layer capacitor. Appl Surf Sci 347:250–257. https://doi.org/10.1016/j.apsusc.2015.04.038

    Article  ADS  CAS  Google Scholar 

  38. Lim C, Ha S, Ha N, Jeong SG, Lee Y-S (2023) Plasma treatment of CFX: the effect of surface chemical modification coupled with surface etching. Carbon Lett. https://doi.org/10.1007/s42823-023-00597-x

    Article  Google Scholar 

  39. Li F, Xie L, Sun G, Kong Q, Su F, Cao Y, Wei J, Ahmad A, Guo X, Chen C-M (2019) Resorcinol-formaldehyde based carbon aerogel: Preparation, structure and applications in energy storage devices. Microporous Mesoporous Mater 279:293–315. https://doi.org/10.1016/j.micromeso.2018.12.007

    Article  CAS  Google Scholar 

  40. Ha N, Jeong SG, Lim C, Ha S, Min CG, Lee Y-S (2023) Preparation and electrochemical characteristics of waste-tire char-based CFX for lithium-ion primary batteries. Carbon Lett 33:1013–1018. https://doi.org/10.1007/s42823-023-00488-1

    Article  Google Scholar 

  41. Kim S, Lim C, Kwak CH, Kim D, Ha S, Lee Y-S (2023) Hydrophobic melamine sponge prepared by direct fluorination for efficient separation of emulsions. J Ind Eng Chem 118:259–267. https://doi.org/10.1016/j.jiec.2022.11.011

    Article  CAS  Google Scholar 

  42. Shen L, Li Y, Zhao W, Wang K, Ci X, Wu Y, Liu G, Liu C, Fang Z (2020) Tuning F-doped degree of rGO: Restraining corrosion-promotion activity of EP/rGO nanocomposite coating. J Mater Sci Technol 44:121–132. https://doi.org/10.1016/j.jmst.2019.09.043

    Article  CAS  Google Scholar 

  43. Myeong S, Lim C, Kim S, Lee Y-S (2023) High-efficiency oil/water separation of hydrophobic stainless steel Mesh filter through carbon and fluorine surface treatment. Korean J Chem Eng 40:1418–1424. https://doi.org/10.1007/s11814-022-1330-x

    Article  CAS  Google Scholar 

  44. Lim C, Kwak CH, Jeong SG, Kim D, Lee Y-S (2023) Enhanced CO2 adsorption of activated carbon with simultaneous surface etching and functionalization by nitrogen plasma treatment. Carbon Lett 33:139–145. https://doi.org/10.1007/s42823-022-00410-1

    Article  Google Scholar 

  45. So SH, Ha S, Min CG, Lee Y-S, Park CR (2023) Effects of nitrogen plasma treatments on hydrogen storage capacity of microporous carbon at room temperature and its feasibility as a hydrogen storage material. Carbon Lett 33:1027–1034. https://doi.org/10.1007/s42823-023-00524-0

    Article  Google Scholar 

  46. Anand S, Ahmad MW, Syed A, Bahkali AH, Verma M, Kim BH, Choudhury A (2023) Walnut shell derived N, S co-doped activated carbon for solid-state symmetry supercapacitor device. J Ind Eng Chem. https://doi.org/10.1016/j.jiec.2023.08.045

    Article  Google Scholar 

  47. Shah A, Mao YM, Singh LR, Gogoi M, Mahato M (2022) Waste plastic-derived FWCNT-NiMgAl composite for supercapacitor application. Carbon Lett 32:1541–1557. https://doi.org/10.1007/s42823-022-00392-0

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by research fund of Chungnam National University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young-Seak Lee.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Myeong, S., Ha, S., Lim, C. et al. Effect of fluorine functional groups introduced into activated carbon aerogel by carbon tetrafluoride plasmas in supercapacitors. Carbon Lett. 34, 65–74 (2024). https://doi.org/10.1007/s42823-023-00668-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42823-023-00668-z

Keywords

Navigation