Skip to main content

Advertisement

Log in

Mild purification of multiwalled carbon nanotubes with increased selectivity for carbon impurity and residual metal removal

  • Original Article
  • Published:
Carbon Letters Aims and scope Submit manuscript

Abstract

In this study, the refinement of Multiwalled Carbon Nanotubes (MWCNTs) derived from chemical vapor decomposition is investigated. An ultrasonic pretreatment method is employed to disentangle carbon and metal impurities intertwined with MWCNTs. The pretreated MWCNTs exhibit a marginal decrease in C–O/C = O content from 8.9 to 8.8%, accompanied by a 2.5% increase in sp3 carbon content, indicating a mildly destructive pretreatment approach. Subsequently, selective oxidation by CO2 and hydrochloric acid etching are utilized to selectively remove carbon impurities and residual metal, respectively. The resulting yield of intact MWCNTs is approximately 85.65 wt.%, signifying a 19.91% enhancement in the one-way yield of pristine MWCNTs. Notably, the residual metal content experiences a substantial reduction from 9.95 ± 2.42 wt.% to 1.34 ± 0.06 wt.%, representing a 15.68% increase in the removal rate. These compelling findings highlight the potential of employing a mild purification process for MWCNTs production, demonstrating promising application prospects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. Ling X et al (2013) The effect of different order of purification treatments on the purity of multiwalled carbon nanotubes. Appl Surf Sci 276:159–166

    Article  ADS  CAS  Google Scholar 

  2. Alshehri R et al (2016) Carbon nanotubes in biomedical applications: factors, mechanisms, and remedies of toxicity. J Med Chem 59:8149–8167

    Article  CAS  PubMed  Google Scholar 

  3. Tian TY et al (2023) Study on chitosan/carbon nanotubes modified materials used to enhance the performance of dental binder. Carbon Lett 33:1661–1667

    Article  Google Scholar 

  4. Liu Q et al (2020) Catalytic decomposition of methane by two-step cascade catalytic process: simultaneous production of hydrogen and carbon nanotubes. Chem Eng Res Des 163:96–106

    Article  CAS  Google Scholar 

  5. Qian JX et al (2020) Methane decomposition to produce CO -free hydrogen and nano-carbon over metal catalysts: a review. Int J Hydrogen Energy 45:7981–8001

    Article  CAS  Google Scholar 

  6. Gupta N et al (2019) Carbon nanotubes: synthesis, properties and engineering applications. Carbon Lett 29:419–447

    Article  Google Scholar 

  7. MacKenzie KJ et al (2010) An updated review of synthesis parameters and growth mechanisms for carbon nanotubes in fluidized beds. Ind Eng Chem Res 49:5323–5338

    Article  CAS  Google Scholar 

  8. Goak JC et al (2019) Efficient gas-phase purification using chloroform for metal-free multi-walled carbon nanotubes. Carbon 148:258–266

    Article  CAS  Google Scholar 

  9. Barkauskas J et al (2010) A novel purification method of carbon nanotubes by high-temperature treatment with tetrachloromethane. Sep Purif Technol 71(3):331–336

    Article  CAS  Google Scholar 

  10. Ballesteros B et al (2008) Steam purification for the removal of graphitic shells coating catalytic particles and the shortening of single-walled carbon nanotubes. Small 4:1501–1506

    Article  CAS  PubMed  Google Scholar 

  11. Mercier, G et al (2013) Selective removal of metal impurities from single walled carbon nanotube samples. New Journal of Chemistry 37.

  12. Suri A et al (2011) The superiority of air oxidation over liquid-phase oxidative treatment in the purification of carbon nanotubes. Carbon 49:3031–3038

    Article  CAS  Google Scholar 

  13. Clancy AJ et al (2016) Systematic comparison of conventional and reductive single-walled carbon nanotube purifications. Carbon 108:423–432

    Article  CAS  Google Scholar 

  14. Li QL et al (2008) Removal of metal catalyst in multi-walled carbon nanotubes with combination of air and hydrogen annealing followed by acid treatment. J Nanosci Nanotechnol 8:5807–5812

    Article  CAS  PubMed  Google Scholar 

  15. Lin Y et al (2015) Purification of carbon nanotube sheets. Adv Eng Mater 17(5):674–688

    Article  CAS  Google Scholar 

  16. Wang D et al (2018) CO2 oxidation of carbon nanotubes for lithium-sulfur batteries with improved electrochemical performance. Carbon 132:370–379

    Article  CAS  Google Scholar 

  17. Vaisman L et al (2006) The role of surfactants in dispersion of carbon nanotubes. Adv Coll Interface Sci 128–130:37–46

    Article  Google Scholar 

  18. Montazeri A et al (2011) The effect of sonication time and dispersing medium on the mechanical properties of multiwalled carbon nanotube (MWCNT)/epoxy composite. Int J Polym Anal Charact 16(7):465–476

    Article  CAS  Google Scholar 

  19. Montazeri A et al (2014) Effect of sonication parameters on the mechanical properties of multi-walled carbon nanotube/epoxy composites. Mater Des 56:500–508

    Article  CAS  Google Scholar 

  20. Lu KL et al (1996) Mechanical damage of carbon nanotubes by ultrasound. Carbon 34(6):814–816

    Article  CAS  Google Scholar 

  21. Suave J et al (2009) Effect of sonication on thermo-mechanical properties of epoxy nanocomposites with carboxylated-SWNT. Mater Sci Eng, A 509(1–2):57–62

    Article  Google Scholar 

  22. Fatemi SM et al (2015) Recent developments concerning the dispersion of carbon nanotubes in surfactant/polymer systems by MD simulation. Journal of Nanostructure in Chemistry 6(1):29–40

    Article  MathSciNet  Google Scholar 

  23. Cui, H et al (2017) Effects of Various Surfactants on the Dispersion of MWCNTs–OH in Aqueous Solution. Nanomaterials 7 (9).

  24. Liu, Q et al (2022) NiFe/Al2O3/Fe-frame catalyst for COx-free hydrogen evolution from catalytic decomposition of methane: Performance and kinetics. Chemical Engineering Journal 436.

  25. Lehman JH et al (2011) Evaluating the characteristics of multiwall carbon nanotubes. Carbon 49(8):2581–2602

    Article  CAS  Google Scholar 

  26. Dunens OM et al (2009) Synthesis of multiwalled carbon nanotubes on Fly ash derived catalysts. Environ Sci Technol 43(20):7889–7894

    Article  ADS  CAS  PubMed  Google Scholar 

  27. Lima A et al (2009) Purity evaluation and influence of carbon nanotube on carbon nanotube/graphite thermal stability. J Therm Anal Calorim 97(1):257–263

    Article  CAS  Google Scholar 

  28. Nuernberg GDB et al (2011) Methane conversion to hydrogen and nanotubes on Pt/Ni catalysts supported over spinel MgAl2O4. Catal Today 176(1):465–469

    Article  CAS  Google Scholar 

  29. Fang W et al (2014) Hydrogen production from bioethanol catalyzed by NiXMg2AlOY ex-hydrotalcite catalysts. Appl Catal B 152–153:370–382

    Article  Google Scholar 

  30. Azhari, S et al (2018) A better understanding of CNTs chemical purification and functionalization processes, 13th IEEE International Conference on Semiconductor Electronics (IEEE ICSE), Kuala Lumpur, MALAYSIA, Aug 15–17; Ieee: Kuala Lumpur, MALAYSIA, 25–28.

  31. McKee GSB et al (2009) Dimensional control of multi-walled carbon nanotubes in floating-catalyst CVD synthesis. Carbon 47(8):2085–2094

    Article  CAS  Google Scholar 

  32. Cho HG et al (2009) A simple and highly effective process for the purification of single-walled carbon nanotubes synthesized with arc-discharge. Carbon 47(15):3544–3549

    Article  CAS  Google Scholar 

  33. Hou PX et al (2001) Purification of single-walled carbon nanotubes synthesized by the hydrogen arc-discharge method. J Mater Res 16(9):2526–2529

    Article  ADS  CAS  Google Scholar 

  34. He RUI, et al (2013) Effects of Ultrasonic Radiation Intensity on the Oxidation of Single-Walled Carbon Nanotubes in a Mixture of Sulfuric and Nitric Acids. Nano 08 (04).

  35. Rahmanian S et al (2013) Synthesis of vertically aligned carbon nanotubes on carbon fiber. Appl Surf Sci 271:424–428

    Article  ADS  CAS  Google Scholar 

  36. Krause B et al (2010) Dispersability and particle size distribution of CNTs in an aqueous surfactant dispersion as a function of ultrasonic treatment time. Carbon 48(10):2746–2754

    Article  CAS  Google Scholar 

  37. Rastegarpanah A et al (2019) Influence of group VIB metals on activity of the Ni/MgO catalysts for methane decomposition. Appl Catal B 248:515–525

    Article  CAS  Google Scholar 

  38. Liu C et al (1999) Hydrogen storage in single-walled carbon nanotubes at room temperature. Science 286(5442):1127–1129

    Article  CAS  PubMed  Google Scholar 

  39. Verdejo R et al (2007) Removal of oxidation debris from multi-walled carbon nanotubes. Chem Commun 5:513–515

    Article  Google Scholar 

  40. Zhang L et al (2011) Mild hydrothermal treatment to prepare highly dispersed multi-walled carbon nanotubes. Appl Surf Sci 257:1845–1849

    Article  ADS  CAS  Google Scholar 

  41. Wang YH et al (2007) A highly selective, one-pot purification method for single-walled carbon nanotubes. J Phys Chem B 111(6):1249–1252

    Article  CAS  PubMed  Google Scholar 

  42. Edwards ER et al (2011) Evaluation of residual iron in carbon nanotubes purified by acid treatments. Appl Surf Sci 258(2):641–648

    Article  ADS  CAS  Google Scholar 

  43. Wepasnick KA et al (2011) Surface and structural characterization of multi-walled carbon nanotubes following different oxidative treatments. Carbon 49(1):24–36

    Article  CAS  Google Scholar 

  44. Das R et al (2014) Common wet chemical agents for purifying multiwalled carbon nanotubes. J Nanomater 2014:1–9

    CAS  Google Scholar 

Download references

Acknowledgements

We appreciate the financial support from the National Natural Science Foundation of China (Grant No. 21978181 and 22178229). In addition, we would like to thank the Institute of New Energy and Low-Carbon Technology, Sichuan University, for SEM capture. Moreover, we are particularly grateful to the Center of Engineering Experimental Teaching, School of Chemical Engineering, Sichuan University, for TGA, FT-IR and Raman technical assistance.

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript. EC and QL conducted the experiments and characterizations, and PW, JH, CL, WJ gave supports on experiment guides and facilities.

Corresponding author

Correspondence to Wei Jiang.

Ethics declarations

Conflict of interest

The authors mentioned in this manuscript declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 6662 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, E., Liu, Q., Wu, P. et al. Mild purification of multiwalled carbon nanotubes with increased selectivity for carbon impurity and residual metal removal. Carbon Lett. 34, 407–420 (2024). https://doi.org/10.1007/s42823-023-00667-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42823-023-00667-0

Keywords

Navigation