Skip to main content
Log in

Purity evaluation and influence of carbon nanotube on carbon nanotube/graphite thermal stability

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

High resolution thermogravimetry has been used to evaluate the carbonaceous content in a commercial sample of single-walled carbon nanotube (SWNT). The content of SWNTs in the sample was found to be at least 77 mass% which was supported by images obtained with scanning and transmission electron microscopies (SEM and TEM). Furthermore, the influence of SWNT addition on the thermal stability of graphite in mixtures of SWNT/graphite at different proportions was investigated. The graphite stability decreased with the increased of SWNT content in the overall range of composition. This behavior could be due to the close contact between these carbonaceous species as determined by SEM analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Treacy MMJ, Ebbesen TW, Gibson JM. Exceptionally high Young's modulus observed for individual carbon nanotubes. Nature. 1996;381:678–80.

    Article  CAS  Google Scholar 

  2. Wildoer JWG, Venema LC, Rinzler AG, Smalley RE, Dekker C. Electronic structure of atomically resolved carbon nanotubes. Nature. 1998;391:59–62.

    Article  CAS  Google Scholar 

  3. Zhao Q, Wagner HD. Raman spectroscopy of carbon-nanotube-based composites. Philos Trans R Soc A. 2004;362:2407–24.

    Article  CAS  Google Scholar 

  4. Wu TM, Lin YW, Liao CS. Preparation and characterization of polyaniline/multi-walled carbon nanotube composites. Carbon. 2005;43:734–40.

    Article  CAS  Google Scholar 

  5. Keogh SM, Hedderman TG, Gregan E, Farrell G, Chambers G, Byrne HJ. Spectroscopic analysis of single-walled carbon nanotubes and semiconjugated polymer composites. J Phys Chem B. 2004;108:6233–41.

    Article  CAS  Google Scholar 

  6. Bom D, Andrews R, Jacques D, Anthony J, Chen BL, Meier MS, et al. Thermogravimetric analysis of the oxidation of multiwalled carbon nanotubes: evidence for the role of defect sites in carbon nanotube chemistry. Nano Lett. 2002;2:615–9.

    Article  CAS  Google Scholar 

  7. Musumeci AW, Silva GG, Martens WN, Waclawik ER, Frost RL. Thermal decomposition and electron microscopy studies of single-walled carbon nanotubes. J Therm Anal Calorim. 2007;88:885–91.

    Article  CAS  Google Scholar 

  8. Pang LSK, Saxby JD, Chatfield SP. Thermogravimetric analysis of carbon nanotubes and nanoparticles. J Phys Chem B. 1993;97:6941–2.

    Article  CAS  Google Scholar 

  9. Ajayan PM, Ebbesen TW, Ichihashi T, Iijima S, Tanigaki K, Hiura H. Opening carbon nanotubes with oxygen and implications for filling. Nature. 1993;362:522–5.

    Article  CAS  Google Scholar 

  10. Zhu QS, Qiu XL, Ma CW. Oxidation resistant SiC coating for graphite materials. Carbon. 1999;37:1475–84.

    Article  CAS  Google Scholar 

  11. Chu X, Schmidt LD. Reaction of NO, O2, H2O, and CO2 with the basal-plane of graphite. Surf Sci. 1992;268:325–32.

    Article  CAS  Google Scholar 

  12. Jiang W, Nadeau G, Zaghib K, Kinoshita K. Thermal analysis of the oxidation of natural graphite – effect of particle size. Thermochim Acta. 2000;351:85–93.

    Article  CAS  Google Scholar 

  13. Klusek Z, Datta PK, Kozlowski W. Nanoscale studies of the oxidation and hydrogenation of graphite surface. Corros Sci. 2003;45:1383–93.

    Article  CAS  Google Scholar 

  14. Moormann R, Hinssen HK, Kuhn K. Oxidation behaviour of an HTR fuel element matrix graphite in oxygen compared to a standard nuclear graphite. Nucl Eng Des. 2004;227:281–4.

    Article  CAS  Google Scholar 

  15. Zaghib K, Song X, Kinoshita K. Thermal analysis of the oxidation of natural graphite: isothermal kinetic studies. Thermochim Acta. 2001;371:57–64.

    Article  CAS  Google Scholar 

  16. Chu X, Schmidt LD. Intrinsic rates of NOx-carbon reactions. Ind Eng Chem Res. 1993;32:1359–66.

    Article  CAS  Google Scholar 

  17. Arepalli S, Nikolaev P, Gorelik O, Hadjiev VG, Bradlev HA, Holmes W, et al. Protocol for the characterization of single-wall carbon nanotube material quality. Carbon. 2004;42:1783–91.

    Article  CAS  Google Scholar 

  18. Dillon AC, Gennett T, Jones KM, Alleman JL, Parilla PA, Heben MJ. A simple and complete purification of single-walled carbon nanotube materials. Adv Mater. 1999;11:1354–8.

    Article  CAS  Google Scholar 

  19. Huang W, Wang Y, Luo GH, Wei F. 99.9% purity multi-walled carbon nanotubes by vacuum high-temperature annealing. Carbon. 2003;41:2585–90.

    Article  CAS  Google Scholar 

  20. Kajiura H, Tsutsui S, Huang HJ, Murakami Y. High-quality single-walled carbon nanotubes from arc-produced soot. Chem Phys Lett. 2002;364:586–92.

    Article  CAS  Google Scholar 

  21. Landi BJ, Cress CD, Evans CM, Raffaelle RP. Thermal oxidation profiling of single-walled carbon nanotubes. Chem Mater. 2005;17:6819–34.

    Article  CAS  Google Scholar 

  22. Murphy R, Coleman JN, Cadek M, McCarthy B, Bent M, Drury A, et al. High-yield, nondestructive purification and quantification method for multiwalled carbon nanotubes. J Phys Chem B. 2002;106:3087–91.

    Article  CAS  Google Scholar 

  23. Smith MR, Hedges SW, LaCount R, Kern D, Shah N, Huffman GP, et al. Selective oxidation of single-walled carbon nanotubes using carbon dioxide. Carbon. 2003;41:1221–30.

    Article  CAS  Google Scholar 

  24. Zhang MF, Yudasaka M, Koshio A, Iijima S. Thermogravimetric analysis of single-wall carbon nanotubes ultrasonicated in monochlorobenzene. Chem Phys Lett. 2002;364:420–6.

    Article  CAS  Google Scholar 

  25. Trigueiro JPC, Silva GG, Lavall RL, Furtado CA, Oliveira S, Ferlauto AS, et al. Purity evaluation of carbon nanotube materials by thermogravimetric, TEM, and SEM methods. J Nanosci Nanotechnol. 2007;7:3477–86.

    Article  CAS  Google Scholar 

  26. Nanocyl. Nanocyl 1100 series Datasheet: Single-wall isolated and bundled carbon nanotubes. Nanocyl S.A., Belgium; 2006.

Download references

Acknowledgements

The authors acknowledge funding from Fapemig, CNPq and Petrobras. We thank the Microscopy Center-Universidade Federal de Minas Gerais for SEM images.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Glaura G. Silva.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lima, A.M.F., Musumeci, A.W., Liu, HW. et al. Purity evaluation and influence of carbon nanotube on carbon nanotube/graphite thermal stability. J Therm Anal Calorim 97, 257–263 (2009). https://doi.org/10.1007/s10973-009-0245-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-009-0245-7

Keywords

Navigation