Skip to main content

Advancement in Carbon Nanotubes: Processing Techniques, Purification and Industrial Applications

  • Chapter
  • First Online:
Emerging Trends in Nanotechnology

Abstract

Right from the starting, carbon nanotubes (CNTs) have been given special attention. Numerous researchers have investigated the processing techniques, purification as well as mechano-physical properties of this advanced form of Carbon (C). At present, CNTs and its composites have gained industrial importance due to its better mechanical, optical and thermal properties when it is compared with other materials. Development in carbon nanotubes-based composites has opened up scopes for their utilization in engineering applications. Various properties such as physical, structural, thermal and mechanical have been improved due to the utilization of CNTs as the reinforcement phase in the composites. The aim of the present chapter is to report the advancement in processing techniques, purification and industrial applications of carbon nanotubes and their composites. Among all the processing techniques, chemical vapor deposition (CVD) is widely used to synthesize carbon nanotubes and oxidation techniques is used for purification purposes. This work also examines the reported literature on the processing and purification of carbon nanotubes as well as the use of carbon nanotubes in the development of composites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Baughman RH, Zakhidov AA, De Heer WA (2002) Carbon nanotubes–the route toward applications. Science, 297(5582):787–792

    Google Scholar 

  2. Treacy MJ, Ebbesen TW, Gibson JM (1996) Exceptionally high Young’s modulus observed for individual carbon nanotubes. Nature 381(6584):678

    Google Scholar 

  3. Dillon A, Jones KM, Bekkedahl TA, Kiang CH, Bethune DS, Heben MJ (1997) Storage of hydrogen in single-walled carbon nanotubes. Nature 386(6623):377

    Article  CAS  Google Scholar 

  4. Dresselhaus MS, Dresselhaus G, Eklund PC (1996) Science of fullerenes and carbon nanotubes: their properties and applications. Elsevier

    Google Scholar 

  5. David WI, Ibberson RM, Matthewman JC, Prassides K, Dennis TJS, Hare JP et al (1991) Crystal structure and bonding of ordered C60. Nature 353(6340):147

    Article  CAS  Google Scholar 

  6. Bethune DS, Kiang CH, De Vries MS, Gorman G, Savoy R, Vazquez J, Beyers R (1993) Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls. Nature 363(6430):605

    Article  CAS  Google Scholar 

  7. Gojny FH, Wichmann MH, Fiedler B, Kinloch IA, Bauhofer W, Windle AH, Schulte K (2006) Evaluation and identification of electrical and thermal conduction mechanisms in carbon nanotube/epoxy composites. Polymer 47(6):2036–2045

    Article  CAS  Google Scholar 

  8. Ma PC, Kim JK (2011) Carbon nanotubes for polymer reinforcement. CRC Press

    Google Scholar 

  9. Sakharova NA, Antunes JM, Pereira AF, Fernandes JV (2017) Developments in the evaluation of elastic properties of carbon nanotubes and their heterojunctions by numerical simulation. AIMS Mater Sci 4(3):706–737

    Article  CAS  Google Scholar 

  10. O’connell MJ, Bachilo SM, Huffman CB, Moore VC, Strano MS, Haroz EH et al (2002) Band gap fluorescence from individual single-walled carbon nanotubes. Science 297(5581):593–596

    Google Scholar 

  11. Chen J, Hamon MA, Hu H, Chen Y, Rao AM, Eklund PC, Haddon RC (1998) Solution properties of single-walled carbon nanotubes. Science 282(5386):95–98

    Article  CAS  Google Scholar 

  12. Bachilo SM, Strano MS, Kittrell C, Hauge RH, Smalley RE, Weisman RB (2002) Structure-assigned optical spectra of single-walled carbon nanotubes. Science 298(5602):2361–2366

    Article  CAS  Google Scholar 

  13. Nikolaev P, Bronikowski MJ, Bradley RK, Rohmund F, Colbert DT, Smith KA, Smalley RE (1999) Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide. Chem Phys Lett 313(1–2):91–97

    Article  CAS  Google Scholar 

  14. Hersam MC (2008) Progress towards monodisperse single-walled carbon nanotubes. Nat Nanotechnol 3(7):387

    Article  CAS  Google Scholar 

  15. White CT, Todorov TN (1998) Carbon nanotubes as long ballistic conductors. Nature 393(6682):240

    Article  CAS  Google Scholar 

  16. Saha A, Gifford BJ, He X, Ao G, Zheng M, Kataura H et al (2018) Narrow-band single-photon emission through selective aryl functionalization of zigzag carbon nanotubes. Nat Chem 10(11):1089

    Article  CAS  Google Scholar 

  17. Magnin Y, Amara H, Ducastelle F, Loiseau A, Bichara C (2018) Entropy-driven stability of chiral single-walled carbon nanotubes. Science 362(6411):212–215

    Article  CAS  Google Scholar 

  18. Lotfizadeh N, Senger M, Minot E, Deshpande VV (2019) Magneto-chiral anisotropy in carbon nanotubes. Bulletin of the American Physical Society

    Google Scholar 

  19. O’connell MJ (2018) Carbon nanotubes: properties and applications. CRC press

    Google Scholar 

  20. He X, Htoon H, Doorn SK, Pernice WHP, Pyatkov F, Krupke R et al. (2018) Carbon nanotubes as emerging quantum-light sources. Nat Mater 1

    Google Scholar 

  21. Feng A, Jia Z, Yu Q, Zhang H, Wu G (2018) Preparation and characterization of carbon nanotubes/carbon fiber/phenolic composites on mechanical and thermal conductivity properties. NANO 13(04):1850037

    Article  CAS  Google Scholar 

  22. Li Y, Wang S, Wang Q, Xing M (2018) A comparison study on mechanical properties of polymer composites reinforced by carbon nanotubes and graphene sheet. Compos B Eng 133:35–41

    Article  CAS  Google Scholar 

  23. Davis TA, Patberg SM, Sargent LM, Stefaniak AB, Holland LA (2018) Capillary electrophoresis analysis of affinity to assess carboxylation of multi-walled carbon nanotubes. Anal Chim Acta 1027:149–157

    Article  CAS  Google Scholar 

  24. Sun K, Xie P, Wang Z, Su T, Shao Q, Ryu J et al (2017) Flexible polydimethylsiloxane/multi-walled carbon nanotubes membranous metacomposites with negative permittivity. Polymer 125:50–57

    Article  CAS  Google Scholar 

  25. Xu S, Liu J, Li Q (2015) Mechanical properties and microstructure of multi-walled carbon nanotube-reinforced cement paste. Constr Build Mater 76:16–23

    Article  Google Scholar 

  26. Ellahi R, Hassan M, Zeeshan A (2015) Study of natural convection MHD nanofluid by means of single and multi-walled carbon nanotubes suspended in a salt-water solution. IEEE Trans Nanotechnol 14(4):726–734

    Article  CAS  Google Scholar 

  27. Yomogida Y, Tanaka T, Zhang M, Yudasaka M, Wei X, Kataura H (2016) Industrial-scale separation of high-purity single-chirality single-wall carbon nanotubes for biological imaging. Nat Commun 7:12056

    Article  CAS  Google Scholar 

  28. Lei T, Chen X, Pitner G, Wong HSP, Bao Z (2016) Removable and recyclable conjugated polymers for highly selective and high-yield dispersion and release of low-cost carbon nanotubes. J Am Chem Soc 138(3):802–805

    Article  CAS  Google Scholar 

  29. Zhou W, Lu J, Zhou K, Yang L, Ke Y, Tang Z, Chen S (2016) CoSe2 nanoparticles embedded defective carbon nanotubes derived from MOFs as efficient electrocatalyst for hydrogen evolution reaction. Nano Energy 28:143–150

    Article  CAS  Google Scholar 

  30. Sharma PP, Wu J, Yadav RM, Liu M, Wright CJ, Tiwary CS et al (2015) Nitrogen-doped carbon nanotube arrays for high-efficiency electrochemical reduction of CO2: on the understanding of defects, defect density, and selectivity. AngewandteChemie Int Edn 54(46):13701–13705

    Article  CAS  Google Scholar 

  31. Ma X, Hartmann NF, Baldwin JK, Doorn SK, Htoon H (2015) Room-temperature single-photon generation from solitary dopants of carbon nanotubes. Nat Nanotechnol 10(8):671

    Article  CAS  Google Scholar 

  32. Sun Z, Ikemoto K, Fukunaga TM, Koretsune T, Arita R, Sato S, Isobe H (2019) Finite phenine nanotubes with periodic vacancy defects. Science 363(6423):151–155

    Article  CAS  Google Scholar 

  33. Selimefendigil F, Öztop HF (2019) Corrugated conductive partition effects on MHD free convection of CNT-water nanofluid in a cavity. Int J Heat Mass Transf 129:265–277

    Article  CAS  Google Scholar 

  34. Song B, Wang T, Wang L, Liu H, Mai X, Wang X et al (2019) Interfacially reinforced carbon fiber/epoxy composite laminates via in-situ synthesized graphitic carbon nitride (g-C3N4). Compos B Eng 158:259–268

    Article  CAS  Google Scholar 

  35. Zhao J, Choe K, Shuai C, Wang A, Wang Q (2019) Free vibration analysis of functionally graded carbon nanotube reinforced composite truncated conical panels with general boundary conditions. Compos B Eng 160:225–240

    Article  CAS  Google Scholar 

  36. Gu H, Zhang H, Ma C, Xu X, Wang Y, Wang Z, Mai X (2019) Trace electrosprayednanopolystyrene facilitated dispersion of multiwalled carbon nanotubes: simultaneously strengthening and toughening epoxy. Carbon 142:131–140

    Article  CAS  Google Scholar 

  37. Zhao M, Meng L, Ma L, Ma L, Yang X, Huang Y, Guo Z (2018) Layer-by-layer grafting CNTs onto carbon fibers surface for enhancing the interfacial properties of epoxy resin composites. Compos Sci Technol 154:28–36

    Article  CAS  Google Scholar 

  38. Yang W, Yang W, Song A, Sun G, Shao G (2018) 3D interconnected porous carbon nanosheets/carbon nanotubes as a polysulfide reservoir for high performance lithium–sulfur batteries. Nanoscale 10(2):816–824

    Article  CAS  Google Scholar 

  39. Lin C, Hu L, Cheng C, Sun K, Guo X, Shao Q et al (2018) Nano-TiNb2O7/carbon nanotubes composite anode for enhanced lithium-ion storage. Electrochim Acta 260:65–72

    Article  CAS  Google Scholar 

  40. Qiu C, Zhang Z, Xiao M, Yang Y, Zhong D, Peng LM (2017) Scaling carbon nanotube complementary transistors to 5-nm gate lengths. Science 355(6322):271–276

    Article  CAS  Google Scholar 

  41. Liang X, Rangom Y, Kwok CY, Pang Q, Nazar LF (2017) Interwoven MXene Nanosheet/Carbon-Nanotube Composites as Li–S Cathode Hosts. Adv Mater 29(3):1603040

    Article  CAS  Google Scholar 

  42. Mao Y, Li G, Guo Y, Li Z, Liang C, Peng X, Lin Z (2017) Foldable interpenetrated metal-organic frameworks/carbon nanotubes thin film for lithium–sulfur batteries. Nat Commun 8:14628

    Article  Google Scholar 

  43. Aijaz A, Masa J, Rösler C, Xia W, Weide P, Botz AJ et al (2016) Co@ Co3O4 encapsulated in carbon nanotube-grafted nitrogen-doped carbon polyhedra as an advanced bifunctional oxygen electrode. AngewandteChemie Int Edn 55(12):4087–4091

    Article  CAS  Google Scholar 

  44. Wen L, Li F, Cheng HM (2016) Carbon nanotubes and graphene for flexible electrochemical energy storage: from materials to devices. Adv Mater 28(22):4306–4337

    Article  CAS  Google Scholar 

  45. Chen YM, Yu L, Lou XW (2016) Hierarchical tubular structures composed of Co3O4 hollow nanoparticles and carbon nanotubes for lithium storage. AngewandteChemie Int Edn 55(20):5990–5993

    Article  CAS  Google Scholar 

  46. Zhao MQ, Ren CE, Ling Z, Lukatskaya MR, Zhang C, Van Aken KL et al (2015) Flexible MXene/carbon nanotube composite paper with high volumetric capacitance. Adv Mater 27(2):339–345

    Article  CAS  Google Scholar 

  47. Kumar S, Ahlawat W, Kumar R, Dilbaghi N (2015) Graphene, carbon nanotubes, zinc oxide and gold as elite nanomaterials for fabrication of biosensors for healthcare. Biosens Bioelectron 70:498–503

    Article  CAS  Google Scholar 

  48. Zou X, Huang X, Goswami A, Silva R, Sathe BR, Mikmeková E, Asefa T (2014) Cobalt-embedded nitrogen-rich carbon nanotubes efficiently catalyze hydrogen evolution reaction at all pH values. AngewandteChemie Int Edn 53(17):4372–4376

    Article  CAS  Google Scholar 

  49. Liu Q, Tian J, Cui W, Jiang P, Cheng N, Asiri AM, Sun X (2014) Carbon nanotubes decorated with CoP nanocrystals: a Highly active non-noble-metal nanohybrid electrocatalyst for hydrogen evolution. AngewandteChemie Int Edn 53(26):6710–6714

    Article  CAS  Google Scholar 

  50. Shulaker MM, Hills G, Patil N, Wei H, Chen HY, Wong HSP, Mitra S (2013) Carbon nanotube computer. Nature 501(7468):526

    Article  CAS  Google Scholar 

  51. Behabtu N, Young CC, Tsentalovich DE, Kleinerman O, Wang X, Ma AW et al. (2013) Strong, light, multifunctional fibers of carbon nanotubes with ultrahigh conductivity. Science 339(6116):182–186

    Google Scholar 

  52. Liu Y, Zhao Y, Sun B, Chen C (2012) Understanding the toxicity of carbon nanotubes. Acc Chem Res 46(3):702–713

    Article  CAS  Google Scholar 

  53. Kim SW, Kim T, Kim YS, Choi HS, Lim HJ, Yang SJ, Park CR (2012) Surface modifications for the effective dispersion of carbon nanotubes in solvents and polymers. Carbon 50(1):3–33

    Article  CAS  Google Scholar 

  54. Saleh TA, Gupta VK (2012) Photo-catalyzed degradation of hazardous dye methyl orange by use of a composite catalyst consisting of multi-walled carbon nanotubes and titanium dioxide. J Colloid Inter Sci 371(1):101–106

    Article  CAS  Google Scholar 

  55. Bianco A, Kostarelos K, Partidos CD, Prato M (2005) Biomedical applications of functionalised carbon nanotubes. Chem Commun 5:571–577

    Article  CAS  Google Scholar 

  56. Li N, Wang Z, Zhao K, Shi Z, Gu Z, Xu S (2010) Large scale synthesis of N-doped multi-layered graphene sheets by simple arc-discharge method. Carbon 48(1):255–259

    Article  CAS  Google Scholar 

  57. NASA’s Goddard Space Flight Center Report (2005) National Aeronautics and Space Administration (NASA)

    Google Scholar 

  58. Wu C, Dong G, Guan L (2010) Production of graphene sheets by a simple helium arc-discharge. Physica E 42(5):1267–1271

    Article  CAS  Google Scholar 

  59. Saito Y, Tani Y, Kasuya A (2000) Diameters of single-wall carbon nanotubes depending on helium gas pressure in an arc discharge. J Phys Chem B 104(11):2495–2499

    Article  CAS  Google Scholar 

  60. Ebbesen TW, Ajayan PM (1992) Large-scale synthesis of carbon nanotubes. Nature 358(6383):220

    Article  CAS  Google Scholar 

  61. Zhou RM, Fleming DW, Murphy CH, Chen RC, Haddon AP (1994) Ramirez and SH Glarum. Science 263:1744

    Article  CAS  Google Scholar 

  62. Ong TP, Xiong F, Chang RPH, White CW (1992) Nucleation and growth of diamond on carbon-implanted single crystal copper surfaces. J Mater Res 7(9):2429–2439

    Article  CAS  Google Scholar 

  63. Hutchison JL, Kiselev NA, Krinichnaya EP, Krestinin AV, Loutfy RO, Morawsky AP et al (2001) Double-walled carbon nanotubes fabricated by a hydrogen arc discharge method. Carbon 39(5):761–770

    Article  CAS  Google Scholar 

  64. Arepalli S (2004) Laser ablation process for single-walled carbon nanotube production. J Nanosci Nanotechnol 4(4):317–325

    Article  CAS  Google Scholar 

  65. Bianco A, Hoebeke J, Kostarelos K, Prato M, Partidos CD (2005) Carbon nanotubes: on the road to deliver. Curr Drug Deliv 2(3):253–259

    Article  CAS  Google Scholar 

  66. Chrzanowska J, Hoffman J, Małolepszy A, Mazurkiewicz M, Kowalewski TA, Szymanski Z, Stobinski L (2015). synthesis of carbon nanotubes by the laser ablation method: effect of laser wavelength. Physica Status Solidi (b), 252(8):1860–1867

    Google Scholar 

  67. Koziol K, Boskovic BO, Yahya N (2010) Synthesis of carbon nanostructures by CVD method. In: carbon and oxide nanostructures. Springer, Berlin, Heidelberg, pp 23–49

    Google Scholar 

  68. Dai H, Hafner JH, Rinzler AG, Colbert DT, Smalley RE (1996) Nanotubes as nanoprobes in scanning probe microscopy. Nature 384(6605):147

    Article  CAS  Google Scholar 

  69. Cumings J, Mickelson W, Zettl A (2003) Simplified synthesis of double-wall carbon nanotubes. Solid State Commun 126(6):359–362

    Article  CAS  Google Scholar 

  70. Deck CP, Mckee GS, Vecchio KS (2006) Synthesis optimization and characterization of multiwalled carbon nanotubes. J Electron Mater 35(2):211–223

    Article  CAS  Google Scholar 

  71. Li YL, Kinloch IA, Windle AH (2004) Direct spinning of carbon nanotube fibers from chemical vapor deposition synthesis. Science 304(5668):276–278

    Article  CAS  Google Scholar 

  72. Tang ZK, Zhang L, Wang N, Zhang XX, Wen GH, Li GD et al (2001) Superconductivity in 4 angstrom single-walled carbon nanotubes. Science 292(5526):2462–2465

    Article  CAS  Google Scholar 

  73. Moisala A, Nasibulin AG, Brown DP, Jiang H, Khriachtchev L, Kauppinen EI (2006) Single-walled carbon nanotube synthesis using ferrocene and iron pentacarbonyl in a laminar flow reactor. Chem Eng Sci 61(13):4393–4402

    Article  CAS  Google Scholar 

  74. Chiang IW, Brinson BE, Huang AY, Willis PA, Bronikowski MJ, Margrave JL et al (2001) Purification and characterization of single-wall carbon nanotubes (SWCNTs) obtained from the gas-phase decomposition of CO (HiPco process). J Phys Chem B 105(35):8297–8301

    Google Scholar 

  75. Resasco DE, Alvarez WE, Pompeo F, Balzano L, Herrera JE, Kitiyanan B, Borgna A (2002) A scalable process for production of single-walled carbon nanotubes (SWCNTs) by catalytic disproportionation of CO on a solid catalyst. J Nanopart Res 4(1–2):131–136

    Google Scholar 

  76. Sigma (2019) Characterization and properties of CoMoCAT® carbon nanotubes. https://www.sigmaaldrich.com/technical-documents/protocols/materials-science/characterization-and.html

  77. Rafique MMA, Iqbal J (2011) Production of carbon nanotubes by different routes-a review. J Encapsul Adsorp Sci 1(02):29

    CAS  Google Scholar 

  78. Mirabootalebi SO, Akbari GH (2017) Methods for synthesis of carbon nanotubes-review. Int J Bio-Inorg Hybr Nanomater 6(2):49–57

    Google Scholar 

  79. Novoselova IA, Oliinyk NF, Volkov SV, Konchits AA, Yanchuk IB, Yefanov VS et al (2008) Electrolytic synthesis of carbon nanotubes from carbon dioxide in molten salts and their characterization. Physica E 40(7):2231–2237

    Article  CAS  Google Scholar 

  80. Vander Wal RL, Hall LJ, Berger GM (2002) Optimization of flame synthesis for carbon nanotubes using supported catalyst. J Phys Chem B 106(51):13122–13132

    Article  CAS  Google Scholar 

  81. Vander Wal RL, Ticich TM (2001) Flame and furnace synthesis of single-walled and multi-walled carbon nanotubes and nanofibers. J Phys Chem B 105(42):10249–10256

    Article  CAS  Google Scholar 

  82. Hong H, Memon NK, Dong Z, Kear BH, Stephen DT (2019) Flame synthesis of gamma-iron-oxide (γ-Fe2O3) nanocrystal films and carbon nanotubes on stainless-steel substrates. Proc Combust Inst 37(1):1249–1256

    Article  CAS  Google Scholar 

  83. Noda S, Hasegawa K, Sugime H, Kakehi K, Zhang Z, Maruyama S, Yamaguchi Y (2007) Millimeter-thick single-walled carbon nanotube forests: hidden role of catalyst support. Jpn J Appl Phys 46(5L):L399

    Article  CAS  Google Scholar 

  84. Shah KA, Tali BA (2016) Synthesis of carbon nanotubes by catalytic chemical vapour deposition: a review on carbon sources, catalysts and substrates. Mater Sci Semicond Process 41:67–82

    Article  CAS  Google Scholar 

  85. Martin CR (1994) Nanomaterials: a membrane-based synthetic approach. Science 266(5193):1961–1966

    Article  CAS  Google Scholar 

  86. Kovtyukhova NI, Mallouk TE, Mayer TS (2003) Templated surface sol–gel synthesis of SiO2 nanotubes and SiO2-insulated metal nanowires. Adv Mater 15(10):780–785

    Google Scholar 

  87. Graham AL, Carlson CA, Edmiston PL (2002) Development and characterization of molecularly imprinted sol–gel materials for the selective detection of DDT. Anal Chem 74(2):458–467

    Article  CAS  Google Scholar 

  88. Yang M, Yang Y, Liu Y, Shen G, Yu R (2006) Platinum nanoparticles-doped sol–gel/carbon nanotubes composite electrochemical sensors and biosensors. Biosens Bioelectron 21(7):1125–1131

    Article  CAS  Google Scholar 

  89. Chen Y, Conway MJ, Fitzgerald JD (2003) Carbon nanotubes formed in graphite after mechanical grinding and thermal annealing. Appl Phys A 76(4):633–636

    Article  CAS  Google Scholar 

  90. Manafi S, Rahimipour MR, Mobasherpour I, Soltanmoradi A (2012) The synthesis of peculiar structure of springlike multiwall carbon nanofibers/nanotubes via mechanothermal method. Journal of Nanomaterials 2012:15

    Article  CAS  Google Scholar 

  91. Chen Y, Conway MJ, Gerald JF, Williams JS, Chadderton LT (2004) The nucleation and growth of carbon nanotubes in a mechano-thermal process. Carbon 42(8–9):1543–1548

    Article  CAS  Google Scholar 

  92. Shiral Fernando KA, Lin Y, Sun YP (2004) High aqueous solubility of functionalized single-walled carbon nanotubes. Langmuir 20(11):4777–4778

    Article  CAS  Google Scholar 

  93. Park TJ, Banerjee S, Hemraj-Benny T, Wong SS (2006) Purification strategies and purity visualization techniques for single-walled carbon nanotubes. J Mater Chem 16(2):141–154

    Article  CAS  Google Scholar 

  94. Dementev N, Osswald S, Gogotsi Y, Borguet E (2009) Purification of carbon nanotubes by dynamic oxidation in air. J Mater Chem 19(42):7904–7908

    Article  CAS  Google Scholar 

  95. Kwon J, Kim H (2005) Comparison of the properties of waterborne polyurethane/multiwalled carbon nanotube and acid-treated multiwalled carbon nanotube composites prepared by in situ polymerization. J Polym Sci Part A Polym Chem 43(17):3973–3985

    Article  CAS  Google Scholar 

  96. Huang W, Wang Y, Luo G, Wei F (2003) 99.9% purity multi-walled carbon nanotubes by vacuum high-temperature annealing. Carbon 41(13):2585–2590

    Google Scholar 

  97. Zhang H, Xu L, Yang F, Geng L (2010) The synthesis of polyacrylonitrile/carbon nanotube microspheres by aqueous deposition polymerization under ultrasonication. Carbon 48(3):688–695

    Article  CAS  Google Scholar 

  98. Kim Y, Luzzi DE (2005) Purification of pulsed laser synthesized single wall carbon nanotubes by magnetic filtration. J Phys Chem B 109(35):16636–16643

    Article  CAS  Google Scholar 

  99. Ghosh S, Bachilo SM, Weisman RB (2014) Removing aggregates from single-walled carbon nanotube samples by magnetic purification. J Phys Chem C 118(8):4489–4494

    Article  CAS  Google Scholar 

  100. Bandow S, Rao AM, Williams KA, Thess A, Smalley RE, Eklund PC (1997) Purification of single-wall carbon nanotubes by microfiltration. J Phys Chem B 101(44):8839–8842

    Article  CAS  Google Scholar 

  101. Hirsch A (2002) Functionalization of single-walled carbon nanotubes. AngewandteChemie Int Edn 41(11):1853–1859

    Article  CAS  Google Scholar 

  102. Gu Z, Peng H, Hauge RH, Smalley RE, Margrave JL (2002) Cutting single-wall carbon nanotubes through fluorination. Nano Lett 2(9):1009–1013

    Article  CAS  Google Scholar 

  103. Jakubus A, Godlewska K, Gromelski M, Jagiello K, Puzyn T, Stepnowski P, Paszkiewicz M (2019) The possibility to use multi-walled carbon nanotubes as a sorbent for dispersive solid phase extraction of selected pharmaceuticals and their metabolites: effect of extraction condition. Microchem J 146:1113–1125

    Article  CAS  Google Scholar 

  104. Tibbetts GG, Devour MG (1986) US Patent No. 4,565,684. US Patent and Trademark Office, Washington, DC

    Google Scholar 

  105. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354(6348):56

    Article  CAS  Google Scholar 

  106. Galvan-Garcia P, Keefer EW, Yang F, Zhang M, Fang S, Zakhidov AA et al (2007) Robust cell migration and neuronal growth on pristine carbon nanotube sheets and yarns. J Biomater Sci Polym Ed 18(10):1245–1261

    Article  CAS  Google Scholar 

  107. Thess A, Lee R, Nikolaev P, Dai H, Petit P, Robert J et al (1996) Crystalline ropes of metallic carbon nanotubes. Science 273(5274):483–487

    Article  CAS  Google Scholar 

  108. Ajayan PM, Zhou OZ (2001) Applications of carbon nanotubes. In Carbon nanotubes. Springer, Berlin, Heidelberg, pp 391–425

    Google Scholar 

  109. Dresselhaus MS, Lin YM, Rabin O, Jorio A, Souza Filho AG, Pimenta MA et al (2003) Nanowires and nanotubes. Mater Sci Eng C 23(1–2):129–140

    Article  Google Scholar 

  110. Smalley RE (2003) Carbon nanotubes: synthesis, structure, properties, and applications, vol. 80. Springer Science & Business Media

    Google Scholar 

  111. Grimes CA, Mungle C, Kouzoudis D, Fang S, Eklund PC (2000) The 500 MHz to 5.50 GHz complex permittivity spectra of single-wall carbon nanotube-loaded polymer composites. Chem Phys Lett 319(5–6):460–464

    Google Scholar 

  112. Files BS, Mayeaux BM (1999) Carbon Nanotubes. Adv Mater Process 156(4):47–49

    CAS  Google Scholar 

  113. Ajayan PM, Schadler LS (2001) Carbon nanotube filled polymer nanocomposites. Polymer Preprints(USA), 42(2):35

    Google Scholar 

  114. Barrera EV (2000) Key methods for developing single-wall nanotube composites. JOM 52(11):38–42

    Article  CAS  Google Scholar 

  115. Jamwal A, Mittal P, Agrawal R, et al (2020) Towards sustainable copper matrix composites: Manufacturing routes with structural, mechanical, electrical and corrosion behaviour. Journal of Composite Materials, 54(19):2635–2649. https://doi.org/10.1177/0021998319900655

  116. Hossain S, Rahman MM, Chawla D, Kumar A, Seth PP, Gupta P, Kumar D, Agrawal R, Jamwal A (2020) Fabrication, microstructural and mechanical behavior of Al-Al2O3-SiC hybrid metal matrix composites. Mater Today Proc 21(3):1458–1461

    Google Scholar 

  117. Sohag MAZ, Gupta P, Kondal N, Kumar D, Singh N, Jamwal A (2020) Effect of ceramic reinforcement on the microstructural, mechanical and tribological behavior of Al–Cu alloy metal matrix composite. Mater Today Proc 21(3):1407–1411

    Google Scholar 

  118. Nayim STI, Hasan MZ, Seth PP, Gupta P, Thakur S, Kumar D, Jamwal A (2020) Effect of CNT and TiC hybrid reinforcement on the micro-mechano-tribo behaviour of aluminium matrix composites. Mater Today Proc 21(3):1421–1424

    Google Scholar 

  119. Kumar A, Arafath MY, Gupta P, Kumar D, Hussain CM, Jamwal A (2020) Microstructural and mechano-tribological behavior of Al reinforced SiC-TiC hybrid metal matrix composite. Maters Today Proc 21(3):1417–1420

    Google Scholar 

  120. Bandil K, Vashisth H, Kumar S, Verma L, Jamwal A, Kumar D et al (2019) Microstructural, mechanical and corrosion behaviour of Al–Si alloy reinforced with SiC metal matrix composite. J Compos Mater 53(28–30):4215–4223

    Article  CAS  Google Scholar 

  121. Jamwal A, Vates UK, Gupta P, Aggarwal A, Sharma BP (2019) Fabrication and characterization of Al2O3–TiC-reinforced aluminum matrix composites. In: Advances in industrial and production engineering. Springer, Singapore, pp 349–356

    Google Scholar 

  122. Garg P, Jamwal A, Kumar D, Sadasivuni KK, Hussain CM, Gupta P (2019) Advance research progresses in aluminium matrix composites: manufacturing & applications. J Mater Res Tech 8(5):4924–4939

    Article  CAS  Google Scholar 

  123. Jamwal A, Prakash P, Kumar D, Singh N, Sadasivuni KK, Harshit K et al (2019) Microstructure, wear and corrosion characteristics of Cu matrix reinforced SiC–graphite hybrid composites. J Compos Mater 53(18):2545–2553

    Article  CAS  Google Scholar 

  124. Jamwal A, Agrawal R, Gupta, P, Application of Multi-Criteria Decision-Making Techniques in the Optimization of Mechano-Tribological Properties of Copper-SiC-Graphite Hybrid Metal Matrix Composites. In Intelligent Manufacturing (pp 149–172). Springer, Cham

    Google Scholar 

  125. Jamwal A, Aggarwal A, Gautam N, Devarapalli A (2018) Electro-discharge machining: recent developments and trends. Int Res J Eng Technol 5:433–448

    Google Scholar 

  126. Kakkar K, Rawat N, Jamwal A, Aggarwal A (2018) Optimization of surface roughness, material removal rate and tool wear rate in EDM using Taguchi method. Int J Adv Res Ideas Innov Technol 4(2):16–24

    Google Scholar 

  127. Nayim ST I, Hasan MZ, Jamwal A, Thakur S, Gupta S (2019) Recent trends & developments in optimization and modelling of electro-discharge machining using modern techniques: A review. In: AIP conference proceedings, vol. 2148, No. 1. AIP Publishing LLC, p 030051

    Google Scholar 

  128. Jamwal A, Seth PP, Kumar D, Agrawal R, Sadasivuni KK, Gupta P (2020) Microstructural, tribological and compression behaviour of Copper matrix reinforced with Graphite-SiC hybrid composites. Mater Chem Phys 123090

    Google Scholar 

  129. He C, Zhao N, Shi C, Du X, Li J, Li H, Cui Q (2007) An approach to obtaining homogeneously dispersed carbon nanotubes in Al powders for preparing reinforced Al-matrix composites. Adv Mater 19(8):1128–1132

    Article  CAS  Google Scholar 

  130. Guo B, Zhang X, Cen X, Wang X, Song M, Ni S et al (2018) Ameliorated mechanical and thermal properties of SiC reinforced Al matrix composites through hybridizing carbon nanotubes. Mater Charact 136:272–280

    Article  CAS  Google Scholar 

  131. Chen WX, Tu JP, Wang LY, Gan HY, Xu ZD, Zhang XB (2003) Tribological application of carbon nanotubes in a metal-based composite coating and composites. Carbon 41(2):215–222

    Article  CAS  Google Scholar 

  132. Zhan GD, Kuntz JD, Wan J, Mukherjee AK (2003) Single-wall carbon nanotubes as attractive toughening agents in alumina-based nanocomposites. Nat Mater 2(1):38

    Article  CAS  Google Scholar 

  133. Berguiga L, Bellessa J, Vocanson F, Bernstein E, Plenet JC (2006) Carbon nanotube silica glass composites in thin films by the sol–gel technique. Opt Mater 28(3):167–171

    Article  CAS  Google Scholar 

  134. Xia Z, Riester L, Curtin WA, Li H, Sheldon BW, Liang J et al (2004) Direct observation of toughening mechanisms in carbon nanotube ceramic matrix composites. Acta Mater 52(4):931–944

    Article  CAS  Google Scholar 

  135. Cha SI, Kim KT, Lee KH, Mo CB, Hong SH (2005) Strengthening and toughening of carbon nanotube reinforced alumina nanocomposite fabricated by molecular level mixing process. ScriptaMaterialia 53(7):793–797

    CAS  Google Scholar 

  136. Deng C, Zhang X, Wang D, Lin Q, Li A (2007) Preparation and characterization of carbon nanotubes/aluminum matrix composites. Mater Lett 61(8–9):1725–1728

    Article  CAS  Google Scholar 

  137. Yamamoto G, Shirasu K, Hashida T, Takagi T, Suk JW, An J et al (2011) Nanotube fracture during the failure of carbon nanotube/alumina composites. Carbon 49(12):3709–3716

    Article  CAS  Google Scholar 

  138. Rul S, Lefèvre-Schlick F, Capria E, Laurent C, Peigney A (2004) Percolation of single-walled carbon nanotubes in ceramic matrix nanocomposites. Acta Mater 52(4):1061–1067

    Article  CAS  Google Scholar 

  139. Hossain S, Rahman MM, Jamwal A, Gupta P, Thakur S, Gupta S (2019).Processing and characterization of pine epoxy based composites. In: AIP conference proceedings, vol. 2148, No. 1. AIP Publishing LLC, p 030017

    Google Scholar 

  140. Coleman JN, Khan U, Blau WJ, Gun’ko YK (2006) Small but strong: a review of the mechanical properties of carbon nanotube–polymer composites. Carbon 44(9):1624–1652

    Article  CAS  Google Scholar 

  141. Breuer O, Sundararaj U (2004) Big returns from small fibers: a review of polymer/carbon nanotube composites. Polym Compos 25(6):630–645

    Article  CAS  Google Scholar 

  142. Moniruzzaman M, Winey KI (2006) Polymer nanocomposites containing carbon nanotubes. Macromolecules 39(16):5194–5205

    Article  CAS  Google Scholar 

  143. Martone A, Formicola C, Giordano M, Zarrelli M (2010) Reinforcement efficiency of multi-walled carbon nanotube/epoxy nano composites. Compos Sci Technol 70(7):1154–1160

    Article  CAS  Google Scholar 

  144. Xie L, Xu F, Qiu F, Lu H, Yang Y (2007) Single-walled carbon nanotubes functionalized with high bonding density of polymer layers and enhanced mechanical properties of composites. Macromolecules 40(9):3296–3305

    Article  CAS  Google Scholar 

  145. Li Z, Luo G, Wei F, Huang Y (2006) Microstructure of carbon nanotubes/PET conductive composites fibers and their properties. Compos Sci Technol 66(7–8):1022–1029

    Article  CAS  Google Scholar 

  146. Shen J, Champagne MF, Yang Z, Yu Q, Gendron R, Guo S (2012) The development of a conductive carbon nanotube (CNT) network in CNT/polypropylene composite films during biaxial stretching. Compos A Appl Sci Manuf 43(9):1448–1453

    Article  CAS  Google Scholar 

  147. Pötschke P, Abdel-Goad M, Alig I, Dudkin S, Lellinger D (2004) Rheological and dielectrical characterization of melt mixed polycarbonate-multiwalled carbon nanotube composites. Polymer 45(26):8863–8870

    Article  CAS  Google Scholar 

  148. Dalton AB, Collins S, Munoz E, Razal JM, Ebron VH, Ferraris JP et al (2003) Super-tough carbon-nanotube fibres. Nature 423(6941):703

    Article  CAS  Google Scholar 

  149. Irshidat MR, Al-Saleh MH, Al-Shoubaki M (2015) Using carbon nanotubes to improve strengthening efficiency of carbon fiber/epoxy composites confined RC columns. Compos Struct 134:523–532

    Article  Google Scholar 

  150. Lafdi K, Matzek M (2003) Carbon nanofibers as a nano-reinforcement for polymeric nanocomposites. In: The 35th international SAMPE technical conference

    Google Scholar 

  151. Tarfaoui M, Lafdi K, El Moumen A (2016) Mechanical properties of carbon nanotubes based polymer composites. Compos B Eng 103:113–121

    Article  CAS  Google Scholar 

  152. Jia X, Zhang Q, Zhao MQ, Xu GH, Huang JQ, Qian W et al (2012) Dramatic enhancements in toughness of polyimide nanocomposite via long-CNT-induced long-range creep. J Mater Chem 22(14):7050–7056

    Article  CAS  Google Scholar 

  153. Chu J, Young RJ, Slater TJ, Burnett TL, Coburn B, Chichignoud L, Li Z (2018) Realizing the theoretical stiffness of graphene in composites through confinement between carbon fibers. Compos A Appl Sci Manuf 113:311–317

    Article  CAS  Google Scholar 

  154. Kinloch IA, Suhr J, Lou J, Young RJ, Ajayan PM (2018) Composites with carbon nanotubes and graphene: an outlook. Science 362(6414):547–553

    Article  CAS  Google Scholar 

  155. Chen H, Ginzburg VV, Yang J, Yang Y, Liu W, Huang Y et al (2016) Thermal conductivity of polymer-based composites: fundamentals and applications. Prog Polym Sci 59:41–85

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pallav Gupta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jamwal, A., Hasan, M.Z., Agrawal, R., Sharma, M., Thakur, S., Gupta, P. (2021). Advancement in Carbon Nanotubes: Processing Techniques, Purification and Industrial Applications. In: Khan, Z.H. (eds) Emerging Trends in Nanotechnology. Springer, Singapore. https://doi.org/10.1007/978-981-15-9904-0_11

Download citation

Publish with us

Policies and ethics