Skip to main content
Log in

Organic nanorods deposited onto the carbon nanotube networks for flexible zinc-ion batteries

  • Original Article
  • Published:
Carbon Letters Aims and scope Submit manuscript

Abstract

Aqueous Zn-ion batteries (ZIBs) are very attractive owing to their high safety and low cost. Among various cathode materials, organic materials-based electrodes incorporating various redox functional groups have gained significant attention in the field of ZIBs due to their benefits of a tunable structural design, facility, eco-friendly, and possibility of multivalent energy storage. Herein, we demonstrate the nanostructured organic active materials deposited onto the CNT networks (HyPT@CNT) for flexible ZIBs. This HyPT nanorods were obtained reassemblying the herringbone structured 3,4,9,10-tetracarboxylic dianhydride through a hydrothermal process in the presence of acid. These HyPT@CNT hybrids were electronically conductive and redox active, as well as could be fabricated into a flexible electrode achieving flexibility from mechanical integrity of robust networked structure. The as-fabricated flexible ZIBs delivered the high capacity of 100 Ah g−1 at a current density of 0.1 A g−1 and long-term cycling performance exceeding 5000 cycles. Consequently, these electrochemical performances are associated with the redox reactivity of carbonyl groups as verified by spectroscopic and electrochemical characterizations and the hybridization of HyPT nanorods with CNT networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Dunn B, Kamath H, Tarascon J-M (2011) Electrical energy storage for the grid: a battery of choices. Science 334:928–935. https://doi.org/10.1126/science.1212741

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Donghyeok S, Won-Gwang L, Jinwoo L (2023) A short review of the recent developments in functional separators for lithium-sulfur batteries. Korean J Chem Eng 40:473–487. https://doi.org/10.1007/s11814-022-1372-0

    Article  CAS  Google Scholar 

  3. Xie J, Zhang Q (2019) Recent progress in multivalent metal (Mg, Zn, Ca, and Al) and metal-ion rechargeable batteries with organic materials as promising electrodes. Small 15:1805061. https://doi.org/10.1002/smll.201805061

    Article  CAS  Google Scholar 

  4. Xiong P, Zhang Y, Zhang J, Baek SH, Zeng L, Yao Y, Park HS (2022) Recent progress of artificial interfacial layers in aqueous Zn metal batteries. EnergyChem 4:100076. https://doi.org/10.1016/j.enchem.2022.100076

    Article  CAS  Google Scholar 

  5. Xiong P et al (2022) Galvanically replaced artificial interfacial layer for highly reversible zinc metal anodes. Appl Phys Rev 9:011401. https://doi.org/10.1063/5.0074327

    Article  CAS  Google Scholar 

  6. Xiong P et al (2023) Charge-transfer complex-based artificial layers for stable and efficient Zn metal anodes. ACS Energy Lett 8:2718–2727. https://doi.org/10.1021/acsenergylett.3c00534

    Article  CAS  Google Scholar 

  7. Xiong P et al (2023) Zn-ion transporting, in situ formed robust solid electrolyte interphase for stable zinc metal anodes over a wide temperature range. ACS Energy Lett 8:1613–1625. https://doi.org/10.1021/acsenergylett.3c00154

    Article  ADS  CAS  Google Scholar 

  8. Zhou L-F et al (2022) A strategy for anode modification for future zinc-based battery application. Mater Horiz 9:2722–2751. https://doi.org/10.1039/d2mh00973k

    Article  MathSciNet  CAS  PubMed  Google Scholar 

  9. Fang G, Zhou J, Pan A, Liang S (2018) Recent advances in aqueous zinc-ion batteries. ACS Energy Lett 3:2480–2501. https://doi.org/10.1021/acsenergylett.8b01426

    Article  CAS  Google Scholar 

  10. Shin KH, Ji D, Park JM, Joe YS, Park HS, Kim J (2023) Structural composite hydrogel electrolytes for flexible and durable Zn metal batteries. Adv Funct Mater. https://doi.org/10.1002/adfm.202309048

    Article  Google Scholar 

  11. Mo F, Guo B, Ling W et al (2022) Recent progress and challenges of flexible Zn-based batteries with polymer electrolyte. Batteries 8:59–75. https://doi.org/10.3390/batteries8060059

    Article  CAS  Google Scholar 

  12. Yan Y, Zhou Y, Li Y, Liu Y (2023) The new focus of energy storage: flexible wearable supercapacitors. Carbon Lett 33:1461–1483. https://doi.org/10.1007/s42823-023-00554-8

    Article  Google Scholar 

  13. Gao J et al (2022) A flexible and stable zinc-ion hybrid capacitor with polysaccharide-reinforced cross-linked hydrogel electrolyte and binder-free carbon cathode. J Mater Chem A 10:24639–24648. https://doi.org/10.1039/d2ta06985g

    Article  CAS  Google Scholar 

  14. Xu W, Wang Y (2019) Recent progress on zinc-ion rechargeable batteries. Nano-Micro Lett 11:90–119. https://doi.org/10.1007/s40820-019-0322-9

    Article  ADS  CAS  Google Scholar 

  15. Pang Q et al (2018) H2V3O8 nanowire/graphene electrodes for aqueous rechargeable zinc ion batteries with high rate capability and large capacity. Adv Energy Mater 8:1800144. https://doi.org/10.1002/aenm.201800144

    Article  CAS  Google Scholar 

  16. Liu X, Shen X, Chen T, Xu Q (2022) The spinel MnFe2O4 grown in biomass-derived porous carbons materials for high-performance cathode materials of aqueous zinc-ion batteries. J Alloy Compd 904:164002. https://doi.org/10.1016/j.jallcom.2022.164002

    Article  CAS  Google Scholar 

  17. Atta MM et al (2023) Nitrogen plasma synthesis of flexible supercapacitors based on reduced graphene oxide/aloe vera/carbon nanotubes nanocomposite. Carbon Lett 33:1639–1648. https://doi.org/10.1007/s42823-023-00548-6

    Article  Google Scholar 

  18. Rajeshkumar L, Ramesh M, Bhuvaneswari V, Balaji D (2023) Carbon nano-materials (CNMs) derived from biomass for energy storage applications: a review. Carbon Lett 33:661–690. https://doi.org/10.1007/s42823-023-00478-3

    Article  Google Scholar 

  19. Amy Aynee C, Archina B, Abdul AAR, Shaliza I (2022) Recent advances on the coconut shell derived carbonaceous material for the removal of recalcitrant pollutants: a review. Korean J Chem Eng 39:2571–2593. https://doi.org/10.1007/s11814-022-1201-5

    Article  CAS  Google Scholar 

  20. Ehsan K, Hamidreza S (2022) Recent advances in properties and applications of nanoporous materials and porous carbons. Carbon Lett 32:1645–1669. https://doi.org/10.1007/s42823-022-00395-x

    Article  Google Scholar 

  21. Sun W, Wang F et al (2017) Zn/MnO2 battery chemistry with H+ and Zn2+ coinsertion. J Am Chem Soc 139:9775–9778. https://doi.org/10.1021/jacs.7b04471

    Article  CAS  PubMed  Google Scholar 

  22. Pan H et al (2016) Reversible aqueous zinc/manganese oxide energy storage from conversion reactions. Nat Energy 1(5):16039. https://doi.org/10.1038/nenergy.2016.39

    Article  ADS  CAS  Google Scholar 

  23. Wang L, Huang K-W, Chen J, Zheng J (2019) Ultralong cycle stability of aqueous zinc-ion batteries with zinc vanadium oxide cathodes. Sci Adv 5(10):4279. https://doi.org/10.1126/sciadv.aax4279

    Article  ADS  CAS  Google Scholar 

  24. Ding K et al (2023) Recent advances of Na3V2(PO4)3 as cathode for rechargeable zinc-based batteries. Carbon Lett 33:989–1012. https://doi.org/10.1007/s42823-023-00500-8

    Article  Google Scholar 

  25. Yeon JS, Kim WI, Kim HJ, Jang G, Park JM, Park JH, Li Y, Park HS (2023) Accordion-like polyoxometalate hybrid architectures for capacity-dense and flexible Zn-Ion battery cathodes. Energy Storage Mater 63:102944. https://doi.org/10.1016/j.ensm.2023.102944

    Article  Google Scholar 

  26. Patil SJ et al (2022) Ultra-stable flexible Zn-ion capacitor with pseudocapacitive 2D layered niobium oxyphosphides. Energy Storage Mater 45:1040–1051. https://doi.org/10.1016/j.ensm.2021.10.040

    Article  Google Scholar 

  27. Zampardi G, Mantia FL (2020) Prussian blue analogues as aqueous Zn-ion batteries electrodes: current challenges and future perspectives. Curr Opin Electrochem 21:84–92. https://doi.org/10.1016/j.coelec.2020.01.014

    Article  CAS  Google Scholar 

  28. Yang Y et al (2022) Prussian blue and its analogues as cathode materials for Na-, K-, Mg-, Ca- Zn- and Al-ion batteries. Nano Energy 99:107424. https://doi.org/10.1016/j.nanoen.2022.107424

    Article  CAS  Google Scholar 

  29. Pu X et al (2020) High-performance aqueous zinc-ion batteries realized by MOF materials. Nano-Micro Lett 12:152. https://doi.org/10.1007/s40820-020-00487-1

    Article  ADS  CAS  Google Scholar 

  30. Jung M, Gund GS, Dunn B, Park HS (2020) Nanorod-like organic active materials directly grown on the carbon cloth for aqueous zn-ion batteries. Energy Fuels. https://doi.org/10.1021/acs.energyfuels.3c00816

    Article  Google Scholar 

  31. Gao Y, Yin J, Xu X, Cheng Y (2022) Pseudocapacitive storage in cathode materials of aqueous zinc ion batteries toward high power and energy density. J Mater Chem A 10:9773. https://doi.org/10.1039/d2ta01014c

    Article  CAS  Google Scholar 

  32. Zheng S, Wang Q, Hou Y, Li L, Tao Z (2021) Recent progress and strategies toward high performance zinc-organic batteries. J Energy Chem 63:87–112. https://doi.org/10.1016/j.jechem.2021.07.027

    Article  CAS  Google Scholar 

  33. Son EJ, Kim JH, Kim K, Park CB (2016) Quinone and its derivatives for energy harvesting and storage materials. J Mater Chem A 4:11179. https://doi.org/10.1039/c6ta03123d

    Article  CAS  Google Scholar 

  34. Peng et al (2019) Molecular design strategies for electrochemical behavior of aromatic carbonyl compounds in organic and aqueous electrolytes. Adv Sci 6:1900431. https://doi.org/10.1002/advs.201900431

    Article  CAS  Google Scholar 

  35. Shea JJ, Luo C (2020) Organic electrode materials for metal ion batteries. ACS Appl Mater Interfaces 12:5361–5380. https://doi.org/10.1021/acsami.9b20384

    Article  CAS  PubMed  Google Scholar 

  36. Huang T, Long M, Xiao J, Liu H, Wang G (2021) Recent research on emerging organic electrode materials for energy storage. Energy Mater 1:100009. https://doi.org/10.20517/energymater.2021.09

    Article  CAS  Google Scholar 

  37. Gannett CN et al (2021) Organic electrode materials for fast-rate, high-power battery applications. Mater Reports: Energy 1:100008. https://doi.org/10.1016/j.matre.2021.01.003

    Article  CAS  Google Scholar 

  38. Lian X et al (2020) Alkali metal storage mechanism in organic semiconductor of perylene-3,4,9,10-tetracarboxylicdianhydride. Appl Surf Sci 524:146396. https://doi.org/10.1016/j.apsusc.2020.146396

    Article  CAS  Google Scholar 

  39. Mura M et al (2010) Experimental and theoretical analysis of H-bonded supramolecular assemblies of PTCDA molecules. Phys Rev B 81:195412. https://doi.org/10.1103/PhysRevB.81.195412

    Article  ADS  CAS  Google Scholar 

  40. Guo R et al (2019) Surface passivation of black phosphorus via van der Waals stacked PTCDA. Appl Surf Sci 496:143688. https://doi.org/10.1016/j.apsusc.2019.143688

    Article  CAS  Google Scholar 

  41. Belanger RL et al (2019) Diffusion control of organic cathode materials in lithium metal battery. Sci Rep 9:1213. https://doi.org/10.1038/s41598-019-38728-y

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  42. Sowmiyha S et al (2018) Self-assembly of water soluble perylene tetracarboxylic acid with metal cations: selective fluorescence sensing of Cu2+ and Pb2+ ions in paper strips, zebrafish and yeast. J Lumin 203:42–49. https://doi.org/10.1016/j.jlumin.2018.06.026

    Article  CAS  Google Scholar 

  43. Chen Y et al (2015) Organic electrode for non-aqueous potassium-ion batteries. Nano Energy 18:205–211. https://doi.org/10.1016/j.nanoen.2015.10.015

    Article  CAS  Google Scholar 

  44. Calandra P, Fazio E, Neri F, Leone N, Liveri VT (2014) Sensitization of nanocrystalline TiO2 with 3,4,9,10-perylenetetracarboxylic acid. J Nanopart Res 16:2495. https://doi.org/10.1007/s11051-014-2495-y

    Article  CAS  Google Scholar 

  45. Raj MR et al (2020) Perylenedianhydride-based polyimides as organic cathodes for rechargeable lithium and sodium batteries. ACS Appl Energy Mater 3:240–252. https://doi.org/10.1021/acsaem.9b01419

    Article  CAS  Google Scholar 

  46. Liu Y et al (2018) Activating aromatic rings as Na-ion storage sites to achieve high capacity. Chem 4:2463–2478. https://doi.org/10.1016/j.chempr.2018.08.015

    Article  CAS  Google Scholar 

  47. Wnag C, Tang W, Yao Z, Cao B, Fan C (2019) Potassium perylene-tetracarboxylate with two-electron redox behaviors as a highly stable organic anode for K-ion batteries. Chem Commun 55:1801. https://doi.org/10.1039/c8cc09596e

    Article  CAS  Google Scholar 

  48. Cui D, Tian D, Chen S, Yuan L (2016) Graphene wrapped 3,4,9,10-perylenetetracarboxylic dianhydride as a high performance organic cathode for lithium ion batteries. J Mater Chem A 4:9177. https://doi.org/10.1039/c6ta02880b

    Article  CAS  Google Scholar 

  49. Christina LC, Gunlazuardi J, Zulys A (2019) Synthesis and characterization of lanthanide metal-organic framework with perylene 3,4,9,10-tetracarboxylate ligand. 2020 IOP Conf Ser Mater Sci Eng. 902:012046. https://doi.org/10.1088/1757-899X/902/1/012046

    Article  Google Scholar 

  50. Alfaify S et al (2016) Optical properties of nano-rods PTCDA thin films: an important material for optoelectronic applications. Org Opto-Elect 2(1):1–14

    Google Scholar 

  51. Konarev DV et al (2021) Structure, optical and magnetic properties of radical anion, dianion salts and coordination complexes of organic dye 3,4:9,10-perylenetetracarboxylic dianhydride (PTCDA). Dyes Pigm 184:108769. https://doi.org/10.1016/j.dyepig.2020.108769

    Article  CAS  Google Scholar 

  52. Tong Z et al (2020) Tailored redox kinetics, electronic structures and electrode/electrolyte interfaces for fast and high energy-density potassium-organic battery. Adv Funct Mater 30:1907656. https://doi.org/10.1002/adfm.201907656

    Article  CAS  Google Scholar 

  53. Shulitski BG, Filippov VV (2009) IR absorption anisotropy in perylene-3,4,9,10-tetracarboxylic acid dianhydride. J Appl Spectrosc 76(5):660. https://doi.org/10.1007/s10812-009-9254-3

    Article  ADS  CAS  Google Scholar 

  54. Mo Z et al (2018) Electrochemical recognition for tryptophan enantiomers based on 3,4,9,10-perylenetetracarboxylic acid–chitosan composite film. J Solid State Electrochem 22:2405–2412. https://doi.org/10.1007/s10008-018-3960-9

    Article  CAS  Google Scholar 

  55. Zheng R, Zhang M, Sun X, Chen R, Sun X (2019) Perylene-3,4,9,10-tetracarboxylic acid accelerated light-driven water oxidation on ultrathin indium oxide porous sheets. Appl Catal B 254:667–676. https://doi.org/10.1016/j.apcatb.2019.05.003

    Article  CAS  Google Scholar 

  56. Xu M et al (2021) Graphene composite 3,4,9,10-perylenetetracarboxylic sodium salts with a honeycomb structure as a high performance anode material for lithium ion batteries. Nanoscale Adv 3:4561. https://doi.org/10.1039/d1na00366f

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  57. Sayyad AS, Balakrishnan K, Ajayan PM (2011) Chemical reaction mediated self-assembly of PTCDA into nanofibers. Nanoscale 3:3605. https://doi.org/10.1039/c1nr10579e

    Article  ADS  CAS  PubMed  Google Scholar 

  58. Zhao RR, Cao YL, Ai XP, Yang HX (2013) Reversible Li and Na storage behaviors of perylenetetracarboxylates as organic anodes for Li- and Na-ion batteries. J Electroanal Chem 688:93–97. https://doi.org/10.1016/j.jelechem.2012.07.019

    Article  CAS  Google Scholar 

  59. Guo Y et al (2022) Perylenetetracarboxylic acid nanosheets with internal electric fields and anisotropic charge migration for photocatalytic hydrogen evolution. Nat Commun 13:2067. https://doi.org/10.1038/s41467-022-29826-z

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  60. Wu H, Hu T, Chang S, Li L, Yuan W (2021) Sodium-based dual-ion battery based on the organic anode and ionic liquid electrolyte. ACS Appl Mater Interfaces 13:44254–44265. https://doi.org/10.1021/acsami.1c10836

    Article  CAS  PubMed  Google Scholar 

  61. Karlsmo M, Bouchal R, Johansson P (2021) High-performant all-organic aqueous sodium-ion batteries enabled by PTCDA electrodes and a hybrid Na/Mg electrolyte. Angew Chem Int Ed 60:24709–24715. https://doi.org/10.1002/anie.202111620

    Article  CAS  Google Scholar 

  62. Yu F, Wang Y, Liu Y, Hui H-Y, Wang F-X, Li J-F, Wang Q (2022) An aqueous rechargeable zinc-ion battery on basis of an organic pigment. Rare Met 41(7):2230–2236. https://doi.org/10.1007/s12598-021-01941-8

    Article  CAS  Google Scholar 

  63. Han Y et al (2015) Preparation, optical and electrical properties of PTCDA nanostructures. Nanoscale 7:17116–17121. https://doi.org/10.1039/c5nr04738b

    Article  ADS  CAS  PubMed  Google Scholar 

  64. Rodríguez-Pérez IA et al (2017) Mg-ion battery electrode: an organic solid’s herringbone structure squeezed upon Mg-ion insertion. J Am Chem Soc 139:13031–13037. https://doi.org/10.1021/jacs.7b06313

    Article  CAS  PubMed  Google Scholar 

  65. Fan L, Ma R, Wang J, Yang H, Lu B (2018) An ultrafast and highly stable potassium-organic battery. Adv Mater 30:1805486. https://doi.org/10.1002/adma.201805486

    Article  CAS  Google Scholar 

  66. Luo W, Allen M, Raju V, Ji X (2014) An organic pigment as a high-performance cathode for sodium-ion batteries. Adv Energy Mater 4:1400554. https://doi.org/10.1002/aenm.201400554

    Article  CAS  Google Scholar 

  67. Gund GS et al (2019) MXene/polymer hybrid materials for flexible AC-filtering electrochemical capacitors. Joule 3:164–176. https://doi.org/10.1016/j.joule.2018.10.017

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is financially supported by the Technology Innovation Program (20004958, Development of Ultrahigh Performance Supercapacitor and High Power Module) funded by the Ministry of Trade, Industry, and Energy (MOTIE).

Funding

Korea Evaluation Institute of Industrial Technology, 20004958, Ho Seok Park.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ho Seok Park.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 844 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, M.S., Jung, M.K., Rana, H.H. et al. Organic nanorods deposited onto the carbon nanotube networks for flexible zinc-ion batteries. Carbon Lett. 34, 25–39 (2024). https://doi.org/10.1007/s42823-023-00658-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42823-023-00658-1

Keywords

Navigation