Skip to main content

Advertisement

Log in

Carbon nano-materials (CNMs) derived from biomass for energy storage applications: a review

  • Review
  • Published:
Carbon Letters Aims and scope Submit manuscript

Abstract

In today’s world, carbon-based materials research is much wider wherein, it requires a lot of processing techniques to manufacture or synthesize. Moreover, the processing methods through which the carbon-based materials are derived from synthetic sources are of high cost. Processing of such hierarchical porous carbon materials (PCMs) was slightly complex and only very few methods render carbon nano-materials (CNMs) with high specific surface area. Once it is processed, which paves a path to versatile applications. CNMs derived from biological sources are widespread and their application spectrum is also very wide. This review focuses on biomass-derived CNMs from various plant sources for its versatile applications. The major thrust areas of energy storage include batteries, super-capacitors, and fuel cells which are described in this article. Meanwhile, the challenges faced during the processing of biomass-derived CNMs and their future prospects are also discussed comprehensively.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

All data collected or analysed during this review are included in this article.

References

  1. Tarascon JM (2010) Key challenges in future Li-battery research. Philos Trans Royal Soc A 368:3227–3241

    Article  Google Scholar 

  2. Gao Z, Zhang Y, Song N, Li X (2017) Biomass-derived renewable carbon materials for electrochemical energy storage. Mater Res Lett 5:69–88

    Article  CAS  Google Scholar 

  3. Tang W, Zhang Y, Zhong Y, Shen T, Wang X, Xia X et al (2017) Natural biomass-derived carbons for electrochemical energy storage. Mater Res Bull 88:234–241

    Article  CAS  Google Scholar 

  4. Zu L, Zhang W, Qu L, Liu L, Li W, Yu A, Zhao D (2020) Mesoporous materials for electrochemical energy storage and conversion. Adv Energy Mater 10(38):2002152

    Article  CAS  Google Scholar 

  5. Shan C, Yen HJ, Wu K, Lin Q, Zhou M, Guo X et al (2017) Functionalized fullerenes for highly efficient lithium-ion storage: structure-property-performance correlation with energy implications. Nanomater Energy 40:327–335

    Article  CAS  Google Scholar 

  6. Abhilash SV, Meshram P (2022) An overview on chemical processes for synthesis of graphene from waste carbon resources. Carbon Lett 32:653–669

    Article  Google Scholar 

  7. Miao J, Lang Z, Xue T, Li Y, Li Y, Cheng J, Zhang H, Tang Z (2020) Revival of zeolite-templated nanocarbon materials: recent advances in energy storage and conversion. Adv Sci 7(20):2001335

    Article  CAS  Google Scholar 

  8. Sun L, Wang X, Wang Y, Zhang Q (2017) Roles of carbon nanotubes in novel energy storage devices. Carbon 122:462–474

    Article  CAS  Google Scholar 

  9. Aqel A, El-Nour KMMA, Ammar RAA, Al-Warthan A (2012) Carbon nanotubes, science and technology part (I) structure, synthesis and characterisation. Arab J Chem 5:1–23

    Article  CAS  Google Scholar 

  10. Holappa L (2020) A general vision for reduction of energy consumption and CO2 emissions from the steel industry. Metals 10(9):1117

    Article  CAS  Google Scholar 

  11. Chen Z, Ren W, Gao L, Liu B, Pei S, Cheng HM (2011) Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. Nat Mater 10:424

    Article  CAS  Google Scholar 

  12. Osman AI (2022) Production of solid and liquid fuels for energy applications via pyrolysis of biomass. In: Sonil Nanda, Dai-Viet Vo (eds) Innovations in Thermochemical Technologies for Biofuel Process Elsevier BV, pp 63-89

  13. Liu WJ, Jiang H, Yu HQ (2015) Development of biochar-based functional materials: toward a sustainable platform carbon material. Chem Rev 115:12251–12285

    Article  CAS  Google Scholar 

  14. Zhang C, Zhang L, Gao J, Zhang S, Liu Q, Duan P, Hu X (2020) Evolution of the functional groups/structures of biochar and heteroatoms during the pyrolysis of seaweed. Algal Res 48:101900

    Article  Google Scholar 

  15. Saifuddin N, Raziah AZ, Junizah AR (2013) Carbon nanotubes: a review on structure and their interaction with proteins. J Chem. https://doi.org/10.1155/2013/676815

    Article  Google Scholar 

  16. Yang C, Li R, Zhang B, Qiu Q, Wang B, Yang H, Ding Y, Wang C (2019) Pyrolysis of microalgae: a critical review. Fuel Process Technol 186:53–72

    Article  CAS  Google Scholar 

  17. Wang F, Ouyang D, Zhou Z, Page SJ, Liu D, Zhao X (2021) Lignocellulosic biomass as sustainable feedstock and materials for power generation and energy storage. J Energy Chem 57:247–280

    Article  CAS  Google Scholar 

  18. Koytsoumpa EI, Magiri-Skouloudi D, Karellas S, Kakaras E (2021) Bioenergy with carbon capture and utilization: A review on the potential deployment towards a European circular bioeconomy. Renew Sustain Energy Rev 152:111641

    Article  CAS  Google Scholar 

  19. Zhang Z, Zhu Z, Shen B, Liu L (2019) Insights into biochar and hydrochar production and applications: a review. Energy 171:581–598

    Article  CAS  Google Scholar 

  20. Wan Z, Sun Y, Tsang DC, Khan E, Yip AC, Ng YH, Rinklebe J, Ok YS (2020) Customised fabrication of nitrogen-doped biochar for environmental and energy applications. Chem Eng J 401:126136

    Article  CAS  Google Scholar 

  21. Khiari B, Jeguirim M, Limousy L, Bennici S (2019) Biomass derived chars for energy applications. Renew Sustain Energy Rev 108:253–273

    Article  CAS  Google Scholar 

  22. Antero RVP, Alves ACF, de Oliveira SB, Ojala SA, Brum SS (2020) Challenges and alternatives for the adequacy of hydrothermal carbonization of lignocellulosic biomass in cleaner production systems: a review. J Cleaner Prod 252:119899

    Article  CAS  Google Scholar 

  23. Zhu Z, Xu Z (2020) The rational design of biomass-derived carbon materials towards next-generation energy storage: A review. Renew Sustain Energy Rev 134:110308

    Article  CAS  Google Scholar 

  24. Cheng BH, Zeng RJ, Jiang H (2017) Recent developments of post-modification of biochar for electrochemical energy storage. Bioresour Technol 246:224–233

    Article  CAS  Google Scholar 

  25. Khandaker T, Hossain MS, Dhar PK, Rahman M, Hossain M, Ahmed MB (2020) Efficacies of carbon-based adsorbents for carbon dioxide capture. Processes 8(6):654

    Article  CAS  Google Scholar 

  26. Brewer CE, Schmidt-Rohr K, Satrio JA, Brown RC (2009) Characterization of biochar from fast pyrolysis and gasification systems. Environ Prog Sustain Energy 28:386–396

    Article  CAS  Google Scholar 

  27. Jin H, Wang X, Gu Z, Polin J (2013) Carbon materials from high ash biochar for supercapacitor and improvement of capacitance with HNO3 surface oxidation. J Power Sources 236:285–292

    Article  CAS  Google Scholar 

  28. Chen F, Yang J, Bai T, Long B, Zhou X (2016) Biomass waste-derived honeycomb-like nitrogen and oxygen dual-doped porous carbon for high performance lithium sulfur batteries. Electrochim Acta 192:99–109

    Article  CAS  Google Scholar 

  29. Kambo HS, Dutta AA (2015) comparative review of biochar and hydrochar in terms of production, physico-chemical properties and applications. Renew Sustain Energy Rev 45:359–378

    Article  CAS  Google Scholar 

  30. Zhao H, Luo X, Zhang H, Sun N, Wei W, Sun Y (2018) Carbon-based adsorbents for post-combustion capture: a review. Greenh Gases Sci Technol 8(1):11–36

    Article  CAS  Google Scholar 

  31. Cheng P, Li T, Yu H, Zhi L, Liu Z, Lei Z (2016) Biomass-derived carbon fiber aerogel as a binder-free electrode for high-rate supercapacitors. J Mater Chem C 120:2079–2086

    CAS  Google Scholar 

  32. Wang L, Schnepp Z, Titirici MM (2013) Rice husk-derived carbon anodes for lithium ion batteries. J Mater Chem 1:5269

    Article  CAS  Google Scholar 

  33. Wang T, Zhang D, Fang K, Zhu W, Peng Q, Xie Z (2021) Enhanced nitrate removal by physical activation and Mg/Al layered double hydroxide modified biochar derived from wood waste: Adsorption characteristics and mechanisms. J Environ Chem Eng 9(4):105184

    Article  CAS  Google Scholar 

  34. Liu T, Li X (2019) Biomass-derived nanostructured porous carbons for sodium ion batteries: a review. Mater Technol 34:232–245

    Article  CAS  Google Scholar 

  35. Dong D, Zhang Y, Xiao Y, Wang T, Wang J, Pan WP (2020) Synthesis of O-doped coal-based carbon electrode materials by ultrasound-assisted bimetallic activation for application in supercapacitors. Appl Surf Sci 529:147074

    Article  CAS  Google Scholar 

  36. Li H, Cheng Z, Zhang Q, Natan A, Yang Y, Cao D et al (2018) Bacterial-derived, compressible, and hierarchical porous carbon for high-performance potassium ion batteries. Nano Lett 18:7407–7413

    Article  CAS  Google Scholar 

  37. Hoang AT, Nižetić S, Cheng CK, Luque R, Thomas S, Banh TL, Nguyen XP (2022) Heavy metal removal by biomass-derived carbon nanotubes as a greener environmental remediation: A comprehensive review. Chemosphere 287:131959

    Article  CAS  Google Scholar 

  38. Bibri SE, Krogstie J (2020) Environmentally data-driven smart sustainable cities: Applied innovative solutions for energy efficiency, pollution reduction, and urban metabolism. Energy Inform 3(1):1–59

    Article  Google Scholar 

  39. Shah SS, Shaikh MN, Khan MY, Alfasane MA, Rahman MM, Aziz MA (2021) Present status and future prospects of jute in nanotechnology: A review. The Chem Record 1(7):1631–1665

    Article  Google Scholar 

  40. Dhilip Kumar R, Nagarani S, Sethuraman V, Andra S, Dhinakaran V (2022) Investigations of conducting polymers, carbon materials, oxide and sulfide materials for supercapacitor applications: A review. Chem Pap 76:3371–3385

    Article  CAS  Google Scholar 

  41. Hosseinzadeh A, Zhou JL, Li X, Afsari M, Altaee A (2022) Techno-economic and environmental impact assessment of hydrogen production processes using bio-waste as renewable energy resource. Renew Sustain Energy Rev 156:111991

    Article  CAS  Google Scholar 

  42. Chang BP, Rodriguez-Uribe A, Mohanty AK, Misra MA (2021) comprehensive review of renewable and sustainable biosourced carbon through pyrolysis in biocomposites uses: Current development and future opportunity. Renew Sustain Energy Rev 152:111666

    Article  CAS  Google Scholar 

  43. Oseghe EO, Akpotu SO, Mombeshora ET et al (2021) Multi-dimensional applications of graphitic carbon nitride nanomaterials–A review. J Molecul Liq 44:117820

    Article  Google Scholar 

  44. Azzou KAK, Terbouche A, Ramdane-Terbouche CA et al (2022) Electrochemical performance of new hybrid activated carbon materials from binary and ternary Date-Olive pits for supercapacitor electrodes. J Energy Storage 47:103559

    Article  Google Scholar 

  45. Wareing TC, Gentile P, Phan AN (2021) Biomass-based carbon dots: current development and future perspectives. ACS Nano 5(10):15471–15501

    Article  Google Scholar 

  46. Asghar A, Hussain N, Baqar Z, Sumrin A, Bilal M (2022) Current challenges of biomass refinery and prospects of emerging technologies for sustainable bioproducts and bioeconomy. Biofuels, Bioprod Biorefining. https://doi.org/10.1002/bbb.2403

    Article  Google Scholar 

  47. Sun L, Gong Y, Li D, Pan C (2022) Biomass-derived porous carbon materials: synthesis, designing, and applications for supercapacitors. Green Chem 24:3864–3894

    Article  CAS  Google Scholar 

  48. Dodón A, Quintero V, Chen Austin M, Mora D (2021) Bio-inspired electricity storage alternatives to support massive demand-side energy generation: a review of applications at building scale. Biomimetics 6(3):51

    Article  Google Scholar 

  49. Hossain E, Faruque HMR, Sunny MSH, Mohammad N, Nawar N (2020) A comprehensive review on energy storage systems: Types, comparison, current scenario, applications, barriers, and potential solutions, policies, and future prospects. Energies 13(14):3651

    Article  CAS  Google Scholar 

  50. Li H, He X, Wu T, Jin B, Yang L, Qiu J (2022) Synthesis, modification strategies and applications of coal-based carbon materials. Fuel Process Technol 230:107203

    Article  CAS  Google Scholar 

  51. Ramesh M, Rajeshkumar L, Bhoopathi R (2021) Carbon substrates: a review on fabrication, properties and applications. Carbon Lett 31(4):557–580

    Article  Google Scholar 

  52. Qin L, Wu Y, Hou Z, Zhang S, Jiang E (2021) Synthesis of heteroatom and metallic compound self-co-doped porous carbon derived from swine manure for supercapacitor electrodes and lead ion adsorbents. J Indus Eng Chem 102:195–205

    Article  CAS  Google Scholar 

  53. Zhou X, Zeng Z, Zeng G et al (2020) Persulfate activation by swine bone char-derived hierarchical porous carbon: multiple mechanism system for organic pollutant degradation in aqueous media. Chem Eng J 383:123091

    Article  CAS  Google Scholar 

  54. Qin L, Wu Y, Jiang E (2022) In situ template preparation of porous carbon materials that are derived from swine manure and have ordered hierarchical nanopore structures for energy storage. Energy 242:123040

    Article  CAS  Google Scholar 

  55. Yang H, Sun X, Zhu H et al (2020) Nano-porous carbon materials derived from different biomasses for high performance supercapacitors. Ceram Int 46(5):5811–5820

    Article  CAS  Google Scholar 

  56. Atchudan R, Edison TNJI, Perumal S et al (2022) Facile synthesis of nitrogen-doped porous carbon materials using waste biomass for energy storage applications. Chemosphere 289:133225

    Article  CAS  Google Scholar 

  57. Yıldız Z, Ceylan S (2019) Pyrolysis of tobacco factory waste biomass. J Therm Anal Calorim 136(2):783–794

    Article  Google Scholar 

  58. Hu BB, Lin ZL, Chen Y, Zhao GK et al (2020) Evaluation of biomass briquettes from agricultural waste on industrial application of flue-curing of tobacco. Energy Sources Recover Util Environ Eff. https://doi.org/10.1080/15567036.2020.1796852

    Article  Google Scholar 

  59. Wang J, Jiang B, Liu L, Cao L et al (2022) Tobacco waste biomass for electrochemical energy storage application. J Phys Conf Ser 2160(1):012052

    Article  Google Scholar 

  60. Zhang J, Zhang J, Wang M, Wu S et al (2019) Effect of tobacco stem-derived biochar on soil metal immobilization and the cultivation of tobacco plant. J Soils Sediment 19(5):2313–2321

    Article  CAS  Google Scholar 

  61. Berbeć AK, Matyka M (2020) Biomass characteristics and energy yields of tobacco (Nicotianatabacum L.) cultivated in eastern Poland. Agriculture 10(11):551

    Article  Google Scholar 

  62. Huang Z, Qin C, Wang J, Cao L, Ma Z, Yuan Q, Lin Z, Zhang P (2021) Research on high-value utilization of carbon derived from tobacco waste in supercapacitors. Materials 14(7):1714

    Article  CAS  Google Scholar 

  63. Liu L, Lu Y, Qiu D, Wang D et al (2022) Sodium alginate-derived porous carbon: Self-template carbonization mechanism and application in capacitive energy storage. J Colloid Interface Sci 620:284–292

    Article  CAS  Google Scholar 

  64. Wei L, Huang X, Zhang X, Yang X, Yang J, Yan F, Ya Y (2021) High-performance electrochemical sensing platform based on sodium alginate-derived 3D hierarchically porous carbon for simultaneous determination of dihydroxybenzene isomers. Anal Methods 13(9):1110–1120

    Article  CAS  Google Scholar 

  65. Qin L, Xiao Z, Zhai S, Wang S et al (2020) Alginate-derived porous carbon obtained by nano-ZnO hard template-induced ZnCl2-activation method for enhanced electrochemical performance. J Electrochem Soc 167(4):040505

    Article  CAS  Google Scholar 

  66. Svinterikos E, Zuburtikudis I, Al-Marzouqi M (2020) Electrospun lignin-derived carbon micro-and nanofibers: A review on precursors, properties, and applications. ACS Sustain Chem Eng 8(37):13868–13893

    Article  CAS  Google Scholar 

  67. Anuchi SO, Campbell KLS, Hallett JP (2022) Effective pretreatment of lignin-rich coconut wastes using a low-cost ionic liquid. Scient Rep 12(1):1–11

    Google Scholar 

  68. Li W, Wanninayake N, Gao X, Li M, Pu Y, Kim DY, Ragauskas AJ, Shi J (2020) Mechanistic insight into lignin slow pyrolysis by linking pyrolysis chemistry and carbon material properties. ACS Sustain Chem Eng 8(42):15843–15854

    Article  CAS  Google Scholar 

  69. Li W, Qian D, Kim DY, Cheng YT, Shi J (2022) Engineering lignin-derived carbon–silicon nanocomposite electrodes: insight into the copyrolysis mechanism and process–structure–property–performance relationships. ACS Sustain Chem Eng 10(2):868–879

    Article  CAS  Google Scholar 

  70. Ehsani A, Moftakhar MK (2021) Lignin-derived carbon as a high efficient active material for enhancing pseudocapacitance performance of p-type conductive polymer. J Energy Storage 35:102291

    Article  Google Scholar 

  71. Zhu Y, Li Z, Tao Y, Zhou J, Zhang H (2022) Hierarchical porous carbon materials produced from heavy bio-oil for high-performance supercapacitor electrodes. J Energy Storage 47:103624

    Article  Google Scholar 

  72. Xu D, Yang S, Su Y, Shi L, Zhang S, Xiong Y (2021) Simultaneous production of aromatics-rich bio-oil and carbon nanomaterials from catalytic co-pyrolysis of biomass/plastic wastes and in-line catalytic upgrading of pyrolysis gas. Waste Manag 121:95–104

    Article  CAS  Google Scholar 

  73. Feng P, Li J, Wang H, Xu Z (2020) Biomass-based activated carbon and activators: preparation of activated carbon from corncob by chemical activation with biomass pyrolysis liquids. ACS Omega 5(37):24064–24072

    Article  CAS  Google Scholar 

  74. Ogungbenro AE, Quang DV, Al-Ali KA, Vega LF, Abu-Zahra MR (2020) Synthesis and characterization of activated carbon from biomass date seeds for carbon dioxide adsorption. J Environ Chem Eng 8(5):104257

    Article  CAS  Google Scholar 

  75. Azzou KAK, Terbouche A, Ramdane-Terbouche CA, Belkhalfa H, Bachari K, Hauchard D, Mezaoui D (2022) Electrochemical performance of new hybrid activated carbon materials from binary and ternary Date-Olive pits for supercapacitor electrodes. J Energy Storage 47:103559

    Article  Google Scholar 

  76. Chen Z, Wei W, Ni BJ, Chen H (2022) Plastic wastes derived carbon materials for green energy and sustainable environmental applications. Environ Funct Mater 1(21):34–48

    Google Scholar 

  77. Wu M, Liao J, Yu L, Lv R et al (2020) 2020 Roadmap on carbon materials for energy storage and conversion. Chem Asian J 15(7):995–1013

    Article  CAS  Google Scholar 

  78. Li Y, Mou B, Liang Y, Dong H, Zheng M, Xiao Y, Liu Y (2019) Component degradation-enabled preparation of biomass-based highly porous carbon materials for energy storage. ACS Sustain Chem Eng 7(18):15259–15266

    Article  CAS  Google Scholar 

  79. Li H, He X, Wu T, Jin B, Yang L, Qiu J (2022) Synthesis, modification strategies and applications of coal-based carbon materials. Fuel Process Technol 230:107203

    Article  CAS  Google Scholar 

  80. Gao N, Quan C, Liu B, Li Z, Wu C, Li A (2017) Continuous pyrolysis of sewage sludge in a screw-feeding reactor: products characterization and ecological risk assessment of heavy metals. Energy Fuels 31(5):5063–5072

    Article  CAS  Google Scholar 

  81. Wilson F, Tremain P, Moghtaderi B (2018) Characterization of biochars derived from pyrolysis of biomass and calcium oxide mixtures. Energy Fuels 32(4):4167–4177

    Article  CAS  Google Scholar 

  82. Hossain FM, Kosinkova J, Brown RJ, Ristovski Z, Hankamer B, Stephens E, Rainey TJ (2017) Experimental investigations of physical and chemical properties for microalgae HTL bio-crude using a large batch reactor. Energies 10(4):467

    Article  Google Scholar 

  83. Fan F, Zheng Y, Huang Y, Lu Y, Wang Z, Chen B, Zheng Z (2017) Preparation and characterization of biochars from waste Camellia oleifera shells by different thermochemical processes. Energy Fuels 31(8):8146–8151

    Article  CAS  Google Scholar 

  84. Kieseler S, Neubauer Y, Zobel N (2013) Ultimate and proximate correlations for estimating the higher heating value of hydrothermal solids. Energy Fuels 27(2):908–918

    Article  CAS  Google Scholar 

  85. Nanda S, Mohanty P, Pant KK, Naik S, Kozinski JA, Dalai AK (2013) Characterization of North American lignocellulosic biomass and biochars in terms of their candidacy for alternate renewable fuels. Bioenergy Res 6(2):663–677

    Article  CAS  Google Scholar 

  86. Pfanz H, Vodnik D, Wittmann C, Aschan G, Batic F, Turk B, Macek I (2007) Photosynthetic performance (CO2-compensation point, carboxylation efficiency, and net photosynthesis) of timothy grass (Phleumpratense L.) is affected by elevated carbon dioxide in post-volcanic mofette areas. Environ Exp Botany 61(1):41–48

    Article  CAS  Google Scholar 

  87. Voca N, Bilandzija N, Jurisic V, Matin A, Kricka T, Sedak I (2016) Proximate, ultimate, and energy values analysis of plum biomass by-products case study: Croatia’s potential. J Agric Sci Technol 18(6):1655–1666

    Google Scholar 

  88. Yao D, Hu Q, Wang D, Yang H, Wu C, Wang X, Chen H (2016) Hydrogen production from biomass gasification using biochar as a catalyst/support. Bioresour Technol 216:159–164

    Article  CAS  Google Scholar 

  89. Liu Y, Guo Y, Gao W, Wang Z, Ma Y, Wang Z (2012) Simultaneous preparation of silica and activated carbon from rice husk ash. J Clean Prod 32:204–209

    Article  CAS  Google Scholar 

  90. Ronsse F, Van Hecke S, Dickinson D, Prins W (2013) Production and characterization of slow pyrolysis biochar: influence of feedstock type and pyrolysis conditions. Gcb Bioenergy 5(2):104–115

    Article  CAS  Google Scholar 

  91. Yue Y, Lin Q, Xu Y, Li G, Zhao X (2017) Slow pyrolysis as a measure for rapidly treating cow manure and the biochar characteristics. J Anal Appl Pyrolysis 124:355–361

    Article  CAS  Google Scholar 

  92. Liu W, Mei J, Liu G, Kou Q, Yi T, Xiao S (2018) Nitrogen-doped hierarchical porous carbon from wheat straw for supercapacitors. ACS Sustain Chem Eng 6(9):11595–11605

    Article  CAS  Google Scholar 

  93. Cai J, Li B, Chen C, Wang J, Zhao M, Zhang K (2016) Hydrothermal carbonization of tobacco stalk for fuel application. Bioresour Technol 220:305–311

    Article  CAS  Google Scholar 

  94. Shi Y, Ge Y, Chang J, Shao H, Tang Y (2013) Garden waste biomass for renewable and sustainable energy production in China: potential, challenges and development. Renew Sustain Energy Rev 22:432–437

    Article  Google Scholar 

  95. Chen T, Zhang Y, Wang H, Lu W, Zhou Z, Zhang Y, Ren L (2014) Influence of pyrolysis temperature on characteristics and heavy metal adsorptive performance of biochar derived from municipal sewage sludge. Bioresour Technol 164:47–54

    Article  CAS  Google Scholar 

  96. Huang F, Li D, Wang L, Zhang K et al (2021) Rational introduction of nitridizing agent to hydrothermal carbonization for enhancing CO2 capture performance of tobacco stalk-based porous carbons. J Anal Appl Pyrolysis 157:105047

    Article  CAS  Google Scholar 

  97. Demirbas A (2004) Effects of temperature and particle size on bio-char yield from pyrolysis of agricultural residues. J Anal Appl Pyrolysis 72(2):243–248

    Article  CAS  Google Scholar 

  98. Lee Y, Park J, Ryu C, Gang KS, Yang W, Park YK, Jung J, Hyun S (2013) Comparison of biochar properties from biomass residues produced by slow pyrolysis at 500 °C. Bioresour Technol 148:196–201

    Article  CAS  Google Scholar 

  99. Areeprasert C, Leelachaikul P, Jangkobpattana G, Phumprasop K, Kiattiwat T (2018) Biochar preparation from simulated municipal solid waste employing low temperature carbonization process. IOP Conf Series Mater Sci Eng 311(1):012021

    Article  Google Scholar 

  100. Sánchez ME, Menéndez JA, Domíngue A, Pis JJ, Martínez O, Calvo LF, Bernad PL (2009) Effect of pyrolysis temperature on the composition of the oils obtained from sewage sludge. Biomass Bioenerg 33(6–7):933–940

    Article  Google Scholar 

  101. Ahmad M, Lee SS, Rajapaksha AU, Vithanage M, Zhang M, Cho JS, Lee SE, Ok YS (2013) Trichloroethylene adsorption by pine needle biochars produced at various pyrolysis temperatures. Bioresour Technol 143:615–622

    Article  CAS  Google Scholar 

  102. Cantrell KB, Hunt PG, Uchimiya M, Novak JM, Ro KS (2012) Impact of pyrolysis temperature and manure source on physicochemical characteristics of biochar. Bioresour Technol 107:419–428

    Article  CAS  Google Scholar 

  103. Jin H, Capareda S, Chang Z, Gao J, Xu Y, Zhang J (2014) Biochar pyrolytically produced from municipal solid wastes for aqueous As (V) removal: adsorption property and its improvement with KOH activation. Bioresour Technol 169:622–629

    Article  CAS  Google Scholar 

  104. Novak JM, Lima I, Xing B, Gaskin JW et al (2009) Characterization of designer biochar produced at different temperatures and their effects on a loamy sand. Ann Environ Sci 3(2):195–206

    CAS  Google Scholar 

  105. Cha JS, Park SH, Jung SC, Ryu C, Jeon JK, Shin MC, Park YK (2016) Production and utilization of biochar: a review. J Ind Eng Chem 40:1–15

    Article  CAS  Google Scholar 

  106. Nelissen V, Saha BK, Ruysschaert G, Boeckx P (2014) Effect of different biochar and fertilizer types on N2O and NO emissions. Soil Biol Biochem 70:244–255

    Article  CAS  Google Scholar 

  107. Oh TK, Choi B, Shinogi Y, Chikushi J (2012) Effect of pH conditions on actual and apparent fluoride adsorption by biochar in aqueous phase. Water Air Soil Pollut 223(7):3729–3738

    Article  CAS  Google Scholar 

  108. Tiwari I, Sharma P, Nebhani L (2022) Polybenzoxazine-an enticing precursor for engineering heteroatom-doped porous carbon materials with applications beyond energy, environment and catalysis. Mater Today Chem 23:100734

    Article  CAS  Google Scholar 

  109. Zhang M, Yang C, Wang Y, Gao F, Cheng J, Zhang J (2018) High-performance supercapacitor based on nitrogen and phosphorus co-doped nonporous polybenzoxazine-based carbon electrodes. J Electrochem Soc 165(14):A3313

    Article  CAS  Google Scholar 

  110. Thirukumaran P, Atchudan R, Shakila Parveen A, Santhamoorthy M, Ramkumar V, Kim SC (2021) N-doped mesoporous carbon prepared from a polybenzoxazine precursor for high performance supercapacitors. Polymers 13(13):2048

    Article  CAS  Google Scholar 

  111. Chen P, Wang LK, Wang G, Gao MR, Ge J, Yuan WJ et al (2014) Nitrogen-doped nanoporous carbon nanosheets derived from plant biomass: an efficient catalyst for oxygen reduction reaction. Energy Environ Sci 7:4095–4103

    Article  CAS  Google Scholar 

  112. Kale B, Chatterjee S (2020) Electrochemical energy storage systems: India perspective. Bull Mater Sci 43(1):1–15

    Article  Google Scholar 

  113. Carlini EM, Birkebaek JM, Schroeder R, Massaro F (2018) A Power sector in transition understanding transition towards a cleaner grid and how distributed energy resources affect the design and operation of electric power systems. In 2018 IEEE International Conference on Environment and Electrical Engineering and 2018 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe) (pp. 1–6). IEEE.

  114. Xiao J, Han J, Zhang C, Ling G, Kang F, Yang QH (2022) Dimensionality, function and performance of carbon materials in energy storage devices. Adv Energy Mater 12(4):2100775

    Article  CAS  Google Scholar 

  115. Cheng K, Wallaert S, Ardebili H, Karim A (2022) Advanced triboelectric nanogenerators based on low-dimension carbon materials: A review. Carbon. https://doi.org/10.1016/j.carbon.2022.03.037

    Article  Google Scholar 

  116. Zhang X, Kong D, Li X, Zhi L (2019) Dimensionally designed carbon–silicon hybrids for lithium storage. Adv Func Mater 29(2):1806061

    Article  Google Scholar 

  117. Khan S, Ul-Islam M, Ahmad MW, Khan MS, Imran M, Siyal SH, Javed MS (2022) Synthetic methodologies and energy storage/conversion applications of porous carbon nanosheets: A systematic review. Energy Fuels 36(7):3420–3442

    Article  CAS  Google Scholar 

  118. Majumdar D, Mandal M, Bhattacharya SK (2020) Journey from supercapacitors to supercapatteries: recent advancements in electrochemical energy storage systems. Emerg Mater 3(3):347–367

    Article  CAS  Google Scholar 

  119. Raj CJ, Manikandan R, Yu KH, Nagaraju G, Park MS, Kim DW, Park SY, Kim BC (2020) Engineering thermally activated NiMoO4 nanoflowers and biowaste derived activated carbon-based electrodes for high-performance supercapatteries. Inorg Chem Front 7(2):369–384

    Article  CAS  Google Scholar 

  120. Enock TK, Kingondu CK, Pogrebnoi A, Jande YAC (2017) Status of biomass derived carbon materials for supercapacitor application. Int J Electrochem. https://doi.org/10.1155/2017/6453420

    Article  Google Scholar 

  121. Wu X, Chen Y, Xing Z, Lam CWK, Pang SS, Zhang W, Ju Z (2019) Advanced carbon-based anodes for potassium-ion batteries. Adv Energy Mater 9(21):1900343

    Article  Google Scholar 

  122. Liu Y, Lu YX, Xu YS, Meng QS et al (2020) Pitch-derived soft carbon as stable anode material for potassium ion batteries. Adv Mater 32(17):2000505

    Article  CAS  Google Scholar 

  123. Cui RC, Xu B, Dong HJ, Yang CC, Jiang Q (2020) N/O dual-doped environment-friendly hard carbon as advanced anode for potassium-ion batteries. Adv Sci 7(5):1902547

    Article  CAS  Google Scholar 

  124. Xu Y, Zhang C, Zhou M, Fu Q, Zhao C, Wu M, Lei Y (2018) Highly nitrogen doped carbon nanofibers with superior rate capability and cyclability for potassium ion batteries. Nat Commun 9(1):1–11

    Google Scholar 

  125. Jin CB, Shi P, Zhang XQ, Huang J (2022) Advances in carbon materials for stable lithium metal batteries. New Carbon Mater 37(1):1–24

    Article  CAS  Google Scholar 

  126. Ye H, Xin S, Yin YX, Guo YG (2017) Advanced porous carbon materials for high-efficient lithium metal anodes. Adv Energy Mater 7(23):1700530

    Article  Google Scholar 

  127. Jiang X, Chen Y, Meng X, Cao W, Liu C, Huang Q, Naik N, Murugadoss V, Huang M, Guo Z (2022) The impact of electrode with carbon materials on safety performance of lithium-ion batteries: A review. Carbon. https://doi.org/10.1016/j.carbon.2022.02.011

    Article  Google Scholar 

  128. Zhao Z, Das S, Xing G, Fayon P et al (2018) A 3D organically synthesized porous carbon material for lithium-ion batteries. Angew Chem Int 57(37):11952–11956

    Article  CAS  Google Scholar 

  129. Xiang Y, Lu L, Kottapalli AGP, Pei Y (2022) Status and perspectives of hierarchical porous carbon materials in terms of high-performance lithium–sulfur batteries. Carbon Energy. https://doi.org/10.1002/cey2.185

    Article  Google Scholar 

  130. Borchardt L, OschatzM KS (2016) Carbon materials for lithium sulfur batteries—Ten critical questions. Chem Eur J 22(22):7324–7351

    Article  CAS  Google Scholar 

  131. Li S, Jin B, Zhai X, Li H, Jiang Q (2018) Review of carbon materials for lithium-sulfur batteries. Chem Select 3(8):2245–2260

    CAS  Google Scholar 

  132. Cao H, Wen L, Guo ZQ, Piao N, Hu GJ, Wu MJ, Li F (2022) Application and prospects for using carbon materials to modify lithium iron phosphate materials used at low temperatures. New Carbon Mater 37(1):46–58

    Article  CAS  Google Scholar 

  133. Zhu CY, Ye YW, Guo X et al (2022) Design and synthesis of carbon-based nanomaterials with different dimensions for electrochemical energy storage. New Carbon Mater 37(1):1–35

    Article  Google Scholar 

  134. Li Y, Tian XD, Song Y et al (2021) Preparation of high-performance anthracite-based graphite anode materials and their lithium storage properties. New Carbon Mater 36(3):1–9

    Google Scholar 

  135. Zhang SS, Xu K, Jow TR (2003) The low temperature performance of Li-ion batteries. J Power Sources 115(1):137–140

    Article  CAS  Google Scholar 

  136. Wang ZX, Sun ZH, Shi Y et al (2021) Ion-dipole chemistry drives rapid evolution of li ions solvation sheath in low-temperature Li batteries. Adv Energy Mater 11(28):2100935

    Article  CAS  Google Scholar 

  137. Yang HC, Li J, Sun ZH et al (2020) Reliable liquid electrolytes for lithium metal batteries. Energy Storage Mater 30:113–129

    Article  Google Scholar 

  138. Wang ZX, Sun ZH, Li J et al (2021) Insights into the deposition chemistry of Li ions in nonaqueous electrolyte for stable Li anodes. Chem Soc Rev 50(5):3178–3210

    Article  CAS  Google Scholar 

  139. Li, W(2019) Lignin-derived Carbon and Nanocomposite Materials for Energy Storage Applications. University of Kentucky.

  140. Zheng Z, Wu HH, Liu H, Zhang Q et al (2020) Achieving fast and durable lithium storage through amorphous FeP nanoparticles encapsulated in ultrathin 3D P-doped porous carbon nanosheets. ACS Nano 14(8):9545–9561

    Article  CAS  Google Scholar 

  141. Yang Y, Zhu H, Xiao J, Geng H et al (2020) Achieving ultrahigh-rate and high-safety Li+ storage based on interconnected tunnel structure in micro-size niobium tungsten oxides. Adv Mater 32(12):1905295

    Article  CAS  Google Scholar 

  142. Verma P, Maire P, Novak P (2010) A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries. Electrochim Acta 55(22):6332–6341

    Article  CAS  Google Scholar 

  143. Kirad K, Chaudhari M (2021) Design of cell spacing in lithium-ion battery module for improvement in cooling performance of the battery thermal management system. J Power Sources 481(1):229016

    Article  CAS  Google Scholar 

  144. Wang CY, Zhang GS, Ge SH et al (2016) Lithium-ion battery structure that self-heats at low temperatures. Nature 529(7587):515–518

    Article  CAS  Google Scholar 

  145. Dhilip Kumar R, Nagarani S, Sethuraman V, Andra S, Dhinakaran V (2022) Investigations of conducting polymers, carbon materials, oxide and sulfide materials for supercapacitor applications: A review. Chem Papers 76:1–15

    Article  Google Scholar 

  146. Liang R, Du Y, Xiao P, Cheng J, Yuan S, Chen Y, Yuan J, Chen J (2021) Transition metal oxide electrode materials for supercapacitors: a review of recent developments. Nanomaterials 11(5):1248

    Article  CAS  Google Scholar 

  147. Deepa C, Rajeshkumar L, Ramesh M (2022) Preparation, synthesis, properties and characterization of graphene-based 2D nano-materials for biosensors and bioelectronics. J Mater Res Technol 19:2657–2694

    Article  CAS  Google Scholar 

  148. Ma Y, Xie X, Yang W, Yu Z, Sun X, Zhang Y, Yang X, Kimura H, Hou C, Guo Z, Du W (2021) Recent advances in transition metal oxides with different dimensions as electrodes for high-performance supercapacitors. Adv Compos Hybrid Mater 4(4):906–924

    Article  CAS  Google Scholar 

  149. Zhang R, Zhang W, Shi M, Li H, Ma L, Niu H (2022) Morphology controllable synthesis of heteroatoms-doped carbon materials for high-performance flexible supercapacitor. Dyes Pigm 199:109968

    Article  CAS  Google Scholar 

  150. Shi C, Li S, Pan Y, Guo L, Wang Y (2020) Self-standing porous N doped carbon/carbon foam for high-performance supercarpacitor. Diam Relat Mater 110:108138

    Article  CAS  Google Scholar 

  151. Feng L, Yan B, Wang C, Zhang Q, Jiang S, He S (2022) Preparation of porous activated carbon materials and their application in supercapacitors. Advanced functional porous materials. Springer, Cham, pp 587–612

    Chapter  Google Scholar 

  152. Zhou Y, Li S, Zhao Y, Ling Z, Zhang Z, Fang X (2022) Compatible paraffin@SiO2 microcapsules/polydimethylsiloxane composites with heat storage capacity and enhanced thermal conductivity for thermal management. Compos Sci Technol 218:109192

    Article  CAS  Google Scholar 

  153. Wang D, Li Z, Guo D, Sun M (2022) Metal-organic framework derived zinc and nitrogen co-doped porous carbon materials for high performance zinc-ion hybrid supercapacitors. Electrochim Acta 427:140854

    Article  CAS  Google Scholar 

  154. Ma Z, Wang K, Qiu Y, Liu X, Cao C, Feng Y, Hu P (2018) Nitrogen and sulfur co-doped porous carbon derived from bio-waste as a promising electrocatalyst for zinc-air battery. Energy 143:43–55

    Article  CAS  Google Scholar 

  155. Jiao S, Li Y, Li J, Abrha H, Liu M, Cui J, Wang J, DaiY LX (2022) Graphene oxide as a versatile platform for emerging hydrovoltaic technology. J Mater Chem A. https://doi.org/10.1039/D2TA04830B

    Article  Google Scholar 

  156. Kumar R, Tabrizizadeh T, Chaurasia S, Liu G, Stamplecoskie K (2022) Hydrovoltaic power generation from multiwalled carbon nanotubes. Sustainable Energy Fuels 6(4):1141–1147

    Article  CAS  Google Scholar 

  157. Jiao S, Liu M, Li Y, Abrha H et al (2022) Emerging hydrovoltaic technology based on carbon black and porous carbon materials: A mini review. Carbon 193:339–355

    Article  CAS  Google Scholar 

  158. Zhang Z, Li X, Yin J, Xu Y et al (2018) Emerging hydrovoltaic technology. Nat Nanotechnol 13(12):1109–1119

    Article  CAS  Google Scholar 

  159. Wang JG, Liu H, Zhang X, Li X, Liu X, Kang F (2018) Green synthesis of hierarchically porous carbon nanotubes as advanced materials for high-efficient energy storage. Small 14(13):1703950

    Article  Google Scholar 

  160. Grekov D, Pré P, Alappat BJ (2020) Microwave mode of heating in the preparation of porous carbon materials for adsorption and energy storage applications–An overview. Renew Sustain Energy Rev 124:109743

    Article  Google Scholar 

  161. Liang J, Qu T, Kun X, Zhang Y, Chen S, Cao YC, Xie M, Guo X (2018) Microwave assisted synthesis of camellia oleifera shell-derived porous carbon with rich oxygen functionalities and superior supercapacitor performance. Appl Surf Sci 436:934–940

    Article  CAS  Google Scholar 

  162. Gupta N, Kumar A, Dhasmana H, Kumar A, Verma A, Shukla P, Jain VK (2021) Effect of shape and size of carbon materials on the thermophysical properties of magnesium nitrate hexahydrate for solar thermal energy storage applications. J Energy Storage 41:102899

    Article  Google Scholar 

  163. Honcová P, Sádovská G, Pastvová J, Koštál P, SeidelJ SP, Pilař R (2021) Improvement of thermal energy accumulation by incorporation of carbon nanomaterial into magnesium chloride hexahydrate and magnesium nitrate hexahydrate. Renew Energy 168:1015–1026

    Article  Google Scholar 

  164. Qian M, Wang Y, Xu F, Zhao W, Lin T, Huang F (2018) Extraordinary porous few-layer carbons of high capacitance from pechini combustion of magnesium nitrate gel. ACS Appl Mater Interfaces 10(1):381–388

    Article  CAS  Google Scholar 

  165. Zhao H, Zhao D, YeJ WP, Chai M, Li Z (2022) Directional oxygen functionalization by defect in different metamorphic-grade coal-derived carbon materials for sodium storage. Energy Environ Mater 5(1):313–320

    Article  CAS  Google Scholar 

  166. Liu M, Wang Y, Wu F, Bai Y et al (2022) Advances in carbon materials for sodium and potassium storage. Adv Func Mater 32:2203117

    Article  CAS  Google Scholar 

  167. Memetova A, Tyagi I, Karri RR et al (2022) High-density nanoporous carbon materials as storage material for methane: A value-added solution. Chem Eng J 433:134608

    Article  CAS  Google Scholar 

  168. Casco ME, Martínez-Escandell M, Gadea-Ramos E, Kaneko K, Silvestre-Albero J, Rodríguez-Reinoso F (2015) High-pressure methane storage in porous materials: are carbon materials in the pole position? Chem Mater 27(3):959–964

    Article  CAS  Google Scholar 

  169. Li X, Xing W, ZhuoS ZJ, Li F, Qiao SZ, Lu GQ (2011) Preparation of capacitor’s electrode from sunflower seed shell. Bioresour Technol 102(2):1118–1123

    Article  CAS  Google Scholar 

  170. Zhao G, Chen C, Yu D, Sun L, Yang C, Zhang H, SunY BF, Yu M (2018) One-step production of ONS co-doped three-dimensional hierarchical porous carbons for high-performance supercapacitors. Nano Energy 47:547–555

    Article  CAS  Google Scholar 

  171. Zhang Q, Han K, Li S, Li M, Li J, Ren K (2018) Synthesis of garlic skin-derived 3D hierarchical porous carbon for high-performance supercapacitors. Nanoscale 10(5):2427–2437

    Article  CAS  Google Scholar 

  172. Pang J, Zhang W, Zhang J, CaoG HM, Yang Y (2017) Facile and sustainable synthesis of sodium lignosulfonate derived hierarchical porous carbons for supercapacitors with high volumetric energy densities. Green Chem 19(16):3916–3926

    Article  CAS  Google Scholar 

  173. Qiu Z, Wang Y, Bi X, Zhou T, Zhou J, Zhao J, Miao Z, Yi W, Fu P, Zhuo S (2018) Biochar-based carbons with hierarchical micro-meso-macro porosity for high rate and long cycle life supercapacitors. J Power Sources 376:82–90

    Article  CAS  Google Scholar 

  174. Wang B, Wang Y, Peng Y, Wang X, WangJ ZJ (2018) 3-dimensional interconnected framework of N-doped porous carbon based on sugarcane bagasse for application in supercapacitors and lithium ion batteries. J Power Sources 390:186–196

    Article  CAS  Google Scholar 

  175. Duan B, Gao X, Yao X, Fang Y, Huang L, Zhou J, Zhang L (2016) Unique elastic N-doped carbon nanofibrous microspheres with hierarchical porosity derived from renewable chitin for high rate supercapacitors. Nano Energy 27:482–491

    Article  CAS  Google Scholar 

  176. Gomes VG (2019) High performance hybrid supercapacitor based on doped zucchini-derived carbon dots and graphene. Mater Today Energy 12:198–207

    Article  Google Scholar 

  177. Cao Y, Xie L, Sun G, Su F et al (2018) Hollow carbon microtubes from kapok fiber: structural evolution and energy storage performance. Sustain Energy Fuels 2(2):455–465

    Article  CAS  Google Scholar 

  178. Liu B, Yang M, Chen H, Liu Y, Yang D, Li H (2018) Graphene-like porous carbon nanosheets derived from salvia splendens for high-rate performance supercapacitors. J Power Sources 397:1–10

    Article  CAS  Google Scholar 

  179. Shang T, Xu Y, Li P, Han J, Wu Z, Tao Y, Yang QH (2020) A bio-derived sheet-like porous carbon with thin-layer pore walls for ultrahigh-power supercapacitors. Nano Energy 70:104531

    Article  CAS  Google Scholar 

  180. Tian W, Gao Q, Zhang L, Yang C, Li Z, Tan Y, Qian W, Zhang H (2016) Renewable graphene-like nitrogen-doped carbon nanosheets as supercapacitor electrodes with integrated high energy–power properties. J Mater Chem A 4(22):8690–8699

    Article  CAS  Google Scholar 

  181. Hou J, Jiang K, Wei R et al (2017) Popcorn-derived porous carbon flakes with an ultrahigh specific surface area for superior performance supercapacitors. ACS Appl Mater Interfaces 9(36):30626–30634

    Article  CAS  Google Scholar 

  182. Zhao G, Chen C, Yu D et al (2018) One-step production of ONS co-doped three-dimensional hierarchical porous carbons for high-performance supercapacitors. Nano Energy 47:547–555

    Article  CAS  Google Scholar 

  183. Hao P, Zhao Z, Tian J et al (2014) Hierarchical porous carbon aerogel derived from bagasse for high performance supercapacitor electrode. Nanoscale 6(20):12120–12129

    Article  CAS  Google Scholar 

  184. Zhang F, Liu T, Li M, Yu M, Luo Y, Tong Y, Li Y (2017) Multiscale pore network boosts capacitance of carbon electrodes for ultrafast charging. Nano Lett 17(5):3097–3104

    Article  CAS  Google Scholar 

  185. Liu S, Liang Y, Zhou W et al (2018) Large-scale synthesis of porous carbon via one-step CuCl2 activation of rape pollen for high-performance supercapacitors. J Mater Chem A 6(25):12046–12055

    Article  CAS  Google Scholar 

  186. Feng S, Li W, Wang J, Song Y, Elzatahry AA, Xia Y, Zhao D (2014) Hydrothermal synthesis of ordered mesoporous carbons from a biomass-derived precursor for electrochemical capacitors. Nanoscale 6(24):14657–14661

    Article  CAS  Google Scholar 

  187. Ling Z, Wang Z, Zhang M et al (2016) Sustainable synthesis and assembly of biomass-derived B/N co-doped carbon nanosheets with ultrahigh aspect ratio for high-performance supercapacitors. Adv Func Mater 26(1):111–119

    Article  CAS  Google Scholar 

  188. Wu X, Jiang L, Long C, Fan Z (2015) From flour to honeycomb-like carbon foam: carbon makes room for high energy density supercapacitors. Nano Energy 13:527–536

    Article  CAS  Google Scholar 

  189. Li D, Chang G, Zong L, Xue P, Wang Y, Xia Y, Lai C, Yang D (2019) From double-helix structured seaweed to S-doped carbon aerogel with ultra-high surface area for energy storage. Energy Storage Mater 17:22–30

    Article  CAS  Google Scholar 

  190. Fan P, Ren J, Pang K et al (2018) Cellulose-solvent-assisted, one-step pyrolysis to fabricate heteroatoms-doped porous carbons for electrode materials of supercapacitors. ACS Sustain Chem Eng 6(6):7715–7724

    Article  CAS  Google Scholar 

  191. Xia J, Zhang N, Chong S, Chen Y, Sun C (2018) Three-dimensional porous graphene-like sheets synthesized from biocarbon via low-temperature graphitization for a supercapacitor. Green Chem 20(3):694–700

    Article  CAS  Google Scholar 

  192. Wang R, Wang P, Yan X, Lang J, Peng C, Xue Q (2012) Promising porous carbon derived from celtuce leaves with outstanding supercapacitance and CO2 capture performance. ACS Appl Mater Interfaces 4(11):5800–5806

    Article  CAS  Google Scholar 

  193. Wang C, Wu D, Wang H, Gao Z, Xu F, Jiang K (2018) A green and scalable route to yield porous carbon sheets from biomass for supercapacitors with high capacity. J Mater Chem A 6(3):1244–1254

    Article  CAS  Google Scholar 

  194. Qu R, Zhang W, Liu N et al (2018) Antioil Ag3PO4 nanoparticle/polydopamine/Al2O3 sandwich structure for complex wastewater treatment: dynamic catalysis under natural light. ACS Sustain Chem Eng 6(6):8019–8028

    Article  CAS  Google Scholar 

  195. Qu S, Wan J, Dai C, Jin T, Ma F (2018) Promising as high-performance supercapacitor electrode materials porous carbons derived from biological lotus leaf. J Alloy Compd 751:107–116

    Article  CAS  Google Scholar 

  196. Jain A, Xu C, Jayaraman S, Balasubramanian R, Lee JY, Srinivasan MP (2015) Mesoporous activated carbons with enhanced porosity by optimal hydrothermal pre-treatment of biomass for supercapacitor applications. Microporous Mesoporous Mater 218:55–61

    Article  CAS  Google Scholar 

  197. Chen D, Li L, Xi Y, Li J, Lu M, Cao J, Han W (2018) Self-assembly of biomass microfibers into 3D layer-stacking hierarchical porous carbon for high performance supercapacitors. Electrochim Acta 286:264–270

    Article  CAS  Google Scholar 

  198. Xu H, Wu C, Wei X, Gao S (2018) Hierarchically porous carbon materials with controllable proportion of micropore area by dual-activator synthesis for high-performance supercapacitors. J Mater Chem A 6(31):15340–15347

    Article  CAS  Google Scholar 

  199. Liu M, Niu J, Zhang Z, Dou M, Wang F (2018) Potassium compound-assistant synthesis of multi-heteroatom doped ultrathin porous carbon nanosheets for high performance supercapacitors. Nano Energy 51:366–372

    Article  CAS  Google Scholar 

  200. Qian W, Sun F, Xu Y, Qiu L, Liu C, Wang S, Yan F (2014) Human hair-derived carbon flakes for electrochemical supercapacitors. Energy Environ Sci 7(1):379–386

    Article  CAS  Google Scholar 

  201. Tian X, Ma H, Li Z et al (2017) Flute type micropores activated carbon from cotton stalk for high performance supercapacitors. J Power Sources 359:88–96

    Article  CAS  Google Scholar 

  202. Zhang Y, Liu S, Zheng X et al (2017) Biomass organs control the porosity of their pyrolyzed carbon. Adv Func Mater 27(3):1604687

    Article  Google Scholar 

  203. Liu S, Zhao Y, Zhang B, Xia H, Zhou J, Xie W, Li H (2018) Nano-micro carbon spheres anchored on porous carbon derived from dual-biomass as high rate performance supercapacitor electrodes. J Power Sources 381:116–126

    Article  CAS  Google Scholar 

  204. Lu SY, Jin M, Zhang Y, Niu YB, Gao JC, Li CM (2018) Chemically exfoliating biomass into a graphene-like porous active carbon with rational pore structure, good conductivity, and large surface area for high-performance supercapacitors. Adv Energy Mater 8(11):1702545

    Article  Google Scholar 

  205. Zhao C, Huang Y, Zhao C, Shao X, Zhu Z (2018) Rose-derived 3D carbon nanosheets for high cyclability and extended voltage supercapacitors. Electrochim Acta 291:287–296

    Article  CAS  Google Scholar 

  206. Liu B, Liu Y, Chen H, Yang M, Li H (2017) Oxygen and nitrogen co-doped porous carbon nanosheets derived from Perillafrutescens for high volumetric performance supercapacitors. J Power Sources 341:309–317

    Article  CAS  Google Scholar 

  207. Yan X, Jia Y, Zhuang L, Zhang L, Wang K, Yao X (2018) Defective carbons derived from macadamia nut shell biomass for efficient oxygen reduction and supercapacitors. ChemElectroChem 5(14):1874–1879

    Article  CAS  Google Scholar 

  208. Dong S, He X, Zhang H, Xie X, Yu M, Yu C, Xiao N, Qiu J (2018) Surface modification of biomass-derived hard carbon by grafting porous carbon nanosheets for high-performance supercapacitors. J Mater Chem A 6(33):15954–15960

    Article  CAS  Google Scholar 

  209. Subramanian V, Luo C, Stephan AM, Nahm KS, Thomas S, Wei B (2007) Supercapacitors from activated carbon derived from banana fibers. J Phys Chem C 111(20):7527–7531

    Article  CAS  Google Scholar 

  210. Rufford TE, Hulicova-Jurcakova D, Zhu Z, Lu GQ (2008) Nanoporous carbon electrode from waste coffee beans for high performance supercapacitors. Electrochem Commun 10(10):1594–1597

    Article  CAS  Google Scholar 

  211. Li X, Xing W, Zhuo S, Zhou J, Li F, Qiao SZ, Lu GQ (2011) Preparation of capacitor’s electrode from sunflower seed shell. Bioresour Technol 102(2):1118–1123

    Article  CAS  Google Scholar 

  212. Chen M, Kang X, Wumaier T et al (2013) Preparation of activated carbon from cotton stalk and its application in supercapacitor. J Solid State Electrochem 17(4):1005–1012

    Article  CAS  Google Scholar 

  213. Rufford TE, Hulicova-Jurcakova D, Khosla K, Zhu Z, Lu GQ (2010) Microstructure and electrochemical double-layer capacitance of carbon electrodes prepared by zinc chloride activation of sugar cane bagasse. J Power Sources 195(3):912–918

    Article  CAS  Google Scholar 

  214. Xia X, Liu H, Shi L, He Y (2012) Tobacco stem-based activated carbons for high performance supercapacitors. J Mater Eng Perform 21(9):1956–1961

    Article  CAS  Google Scholar 

  215. Jisha MR, Hwang YJ, Shin JS et al (2009) Electrochemical characterization of supercapacitors based on carbons derived from coffee shells. J Mater Chem Phy 115(1):33–39

    Article  CAS  Google Scholar 

  216. Balathanigaimani MS, Shim WG, Lee MJ, Kim C, Lee JW, Moon H (2008) Highly porous electrodes from novel corn grains-based activated carbons for electrical double layer capacitors. Electrochem Commun 10(6):868–871

    Article  CAS  Google Scholar 

  217. Biswal M, Banerjee A, Deo M, Ogale S (2013) From dead leaves to high energy density supercapacitors. Energy Environ Sci 6(4):1249–1259

    Article  CAS  Google Scholar 

  218. Zhao YQ, Lu M, Tao PY et al (2016) Hierarchically porous and heteroatom doped carbon derived from tobacco rods for supercapacitors. J Power Sources 307:391–400

    Article  CAS  Google Scholar 

  219. Hu CC, Wang CC, Wu FC, Tseng RL (2007) Characterization of pistachio shell-derived carbons activated by a combination of KOH and CO2 for electric double-layer capacitors. Electrochim Acta 52(7):2498–2505

    Article  CAS  Google Scholar 

  220. Wu K, Gao B, Su J et al (2016) Large and porous carbon sheets derived from water hyacinth for high-performance supercapacitors. RSC Adv 6(36):29996–30003

    Article  CAS  Google Scholar 

  221. Kim C, Lee JW, Kim JH, Yang KS (2006) Feasibility of bamboo-based activated carbons for an electrochemical supercapacitor electrode. Korean J Chem Eng 23(4):592–594

    Article  CAS  Google Scholar 

  222. Li J, Zan G, Wu Q (2016) Nitrogen and sulfur self-doped porous carbon from brussel sprouts as electrode materials for high stable supercapacitors. RSC Adv 6(62):57464–57472

    Article  CAS  Google Scholar 

  223. Kalpana D, Cho SH, Lee SB, Lee YS, Misra R, Renganathan NG (2009) Recycled waste paper—A new source of raw material for electric double-layer capacitors. J Power Sources 190(2):587–591

    Article  CAS  Google Scholar 

  224. Zhang Y, Sun J, Tan J, Ma C, Luo S, Li W, Liu S (2021) Multi-walled carbon nanotubes/carbon foam nanocomposites derived from biomass for CO2 capture and supercapacitor applications. Fuel 305:121622

    Article  CAS  Google Scholar 

  225. Tiwari SK, Bystrzejewski M, De Adhikari A, Huczko A, Wang N (2022) Methods for the conversion of biomass waste into value-added carbon nanomaterials: Recent progress and applications. Prog Energy Combust Sci 92:101023

    Article  Google Scholar 

  226. Soffian MS, Halim FZA, Aziz F, Rahman MA, Amin MAM, Chee DNA (2022) Carbon-based material derived from biomass waste for wastewater treatment. Environ Adv 9:100259

    Article  CAS  Google Scholar 

  227. Omoriyekomwan JE, Tahmasebi A, Dou J, Wang R, Yu J (2021) A review on the recent advances in the production of carbon nanotubes and carbon nanofibers via microwave-assisted pyrolysis of biomass. Fuel Process Technol 214:106686

    Article  CAS  Google Scholar 

  228. Priya MS, Divya P, Rajalakshmi R (2020) A review status on characterization and electrochemical behaviour of biomass derived carbon materials for energy storage supercapacitors. Sustain Chem Pharm 16:100243

    Article  Google Scholar 

  229. Jiang L, Sheng L, Fan Z (2018) Biomass-derived carbon materials with structural diversities and their applications in energy storage. Sci Chin Mater 61(2):133–158

    Article  CAS  Google Scholar 

  230. Bi Z, Kong Q, Cao Y et al (2019) Biomass-derived porous carbon materials with different dimensions for supercapacitor electrodes: a review. J Mater Chem A 7(27):16028–16045

    Article  CAS  Google Scholar 

  231. Ghodake GS, Shinde SK, Kadam AA et al (2021) Review on biomass feedstocks, pyrolysis mechanism and physicochemical properties of biochar: State-of-the-art framework to speed up vision of circular bioeconomy. J Clean Prod 297:126645

    Article  CAS  Google Scholar 

  232. Palanivelu K, Ramachandran A, Raghavan V (2021) Biochar from biomass waste as a renewable carbon material for climate change mitigation in reducing greenhouse gas emissions—a review. Biomass Conver Bioref 11(5):2247–2267

    Article  Google Scholar 

  233. Wang J, Zhang X, Li Z, Ma Y, Ma L (2020) Recent progress of biomass-derived carbon materials for supercapacitors. J Power Sour 451:227794

    Article  CAS  Google Scholar 

  234. Zhou J, Zhang S, Zhou YN, Tang W, Yang J, Peng C, Guo Z (2021) Biomass-derived carbon materials for high-performance supercapacitors: current status and perspective. Electrochem Energy Rev 4(2):219–248

    Article  CAS  Google Scholar 

  235. Jeerapan I, Ma N (2019) Challenges and opportunities of carbon nanomaterials for biofuel cells and supercapacitors: personalized energy for futuristic self-sustainable devices. C J Carbon Res 5(4):62

    Article  CAS  Google Scholar 

  236. Devarajan B, Saravanakumar R, Sivalingam S, Bhuvaneswari V, Karimi F, Rajeshkumar L (2022) Catalyst derived from wastes for biofuel production: a critical review and patent landscape analysis. Appl Nanosci 12:3677–3701

    Article  CAS  Google Scholar 

  237. Ershadi M, Javanbakht M, Kiaei Z, Torkzaban H, Mozaffari SA, Ajdari FB (2022) A patent landscape on Fe3O4/graphene-based nanocomposites in lithium-ion batteries. J Energy Storage 46:103924

    Article  Google Scholar 

  238. Jia YZ, Lixin JZ, Xie HL, Liwei TT (2021) Preparation method for preparing energy storage electrode material from biomass pyrolysis oil, Grant no: CN114420472B. (Accessed on 01.01.2023)

  239. Yuxue H (2021) Bamboo charcoal production method and carbonization device used by same, Grant no: CN108059160B. (Accessed on 01.01.2023)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ramesh.

Ethics declarations

Conflict of interest

All authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajeshkumar, L., Ramesh, M., Bhuvaneswari, V. et al. Carbon nano-materials (CNMs) derived from biomass for energy storage applications: a review. Carbon Lett. 33, 661–690 (2023). https://doi.org/10.1007/s42823-023-00478-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42823-023-00478-3

Keywords

Navigation