Skip to main content

Advertisement

Log in

Different microbial communities in paddy soils under organic and nonorganic farming

  • Soil and Agricultural Microbiology - Research Paper
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract  

Organic agriculture is a farming method that provides healthy food and is friendly to the environment, and it is developing rapidly worldwide. This study compared microbial communities in organic farming (Or) paddy fields to those in nonorganic farming (Nr) paddy fields based on 16S rDNA sequencing and analysis. The predominant microorganisms in both soils were Proteobacteria, Chloroflexi, Acidobacteria, Actinobacteria, and Nitrospirota. The alpha diversity of the paddy soil microbial communities was not different between the nonorganic and organic farming systems. The beta diversity of nonmetric multidimensional scaling (NMDS) revealed that the two groups were significantly separated. Distance-based redundancy analysis (db-RDA) suggested that soil pH and electrical conductivity (EC) had a positive relationship with the microbes in organic paddy soils. There were 23 amplicon sequence variants (ASVs) that showed differential abundance. Among them, g_B1-7BS (Proteobacteria), s_Sulfuricaulis limicola (Proteobacteria), g_GAL15 (p_GAL15), c_Thermodesulfovibrionia (Nitrospirota), two of f_Anaerolineaceae (Chloroflexi), and two of g_S085 (Chloroflexi) showed that they were more abundant in organic soils, whereas g_11-24 (Acidobacteriota), g__Subgroup_7 (Acidobacteriota), and g_Bacillus (Firmicutes) showed differential abundance in nonorganic paddy soils. Functional prediction of microbial communities in paddy soils showed that functions related to carbohydrate metabolism could be the major metabolic activities. Our work indicates that organic farming differs from nonorganic farming in terms of microbial composition in paddy soils and provides specific microbes that might be helpful for understanding soil fertility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data and materials are available according to request.

References

  1. Tveit AT, Urich T, Svenning MM (2014) Metatranscriptomic analysis of arctic peat soil microbiota. Appl Environ Microbiol 80:5761–5772. https://doi.org/10.1128/AEM.01030-14

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  2. Garoutte A, Cardenas E, Tiedje J, Howe A (2016) Methodologies for probing the metatranscriptome of grassland soil. J Microbiol Methods 131:122–129. https://doi.org/10.1016/j.mimet.2016.10.018

    Article  CAS  PubMed  Google Scholar 

  3. Buelow HN, Winter AS, Van Horn DJ, Barrett JE, Gooseff MN, Schwartz E, Takacs-Vesbach CD (2016) Microbial community responses to increased water and organic matter in the arid soils of the McMurdo Dry Valleys, Antarctica. Front Microbiol 7:1040. https://doi.org/10.3389/fmicb.2016.01040

    Article  PubMed  PubMed Central  Google Scholar 

  4. Ligi T, Oopkaup K, Truu M, Preem JK, Nolvak H, Mitsch WJ, Mander U, Truu J (2014) Characterization of bacterial communities in soil and sediment of a created riverine wetland complex using high-throughput 16S rRNA amplicon sequencing. Ecol Eng 72:11. https://doi.org/10.1016/j.ecoleng.2013.09.007

    Article  Google Scholar 

  5. Roesch LF, Fulthorpe RR, Riva A, Casella G, Hadwin AK, Kent AD et al (2007) Pyrosequencing enumerates and contrasts soil microbial diversity. ISME J 1:283–290. https://doi.org/10.1038/ismej.2007.53

    Article  CAS  PubMed  Google Scholar 

  6. Cesarano G, De Filippis F, La Storia A, Scala F, Bonanomi G (2017) Organic amendment type and application frequency affect crop yields, soil fertility and microbiome composition. Appl Soil Ecol 120:254–264. https://doi.org/10.1016/j.apsoil.2017.08.017

    Article  Google Scholar 

  7. Wang JC, Song Y, Ma TF, Raza W, Li J, Howland JG et al (2017) Impacts of inorganic and organic fertilization treatments on bacterial and fungal communities in a paddy soil. Appl Soil Ecol 112:42–50. https://doi.org/10.1016/j.apsoil.2017.01.005

    Article  Google Scholar 

  8. Kumar U, Nayak AK, Shahid M, Gupta VVSR, Panneerselvam P, Mohanty S et al (2018) Continuous application of inorganic and organic fertilizers over 47 years in paddy soil alters the bacterial community structure and its influence on rice production. Agr Ecosyst Environ 262:65–75. https://doi.org/10.1016/j.agee.2018.04.016

    Article  Google Scholar 

  9. Nayak PK, Nayak AK, Panda BB, Lal B, Gautam P, Poonam A et al (2018) Ecological mechanism and diversity in rice based integrated farming system. Ecol Indic 91:359–375. https://doi.org/10.1016/j.ecolind.2018.04.025

    Article  CAS  Google Scholar 

  10. Luo XS, Fu XQ, Yang Y, Cai P, Peng SB, Chen WL, Huang QY (2016) Microbial communities play important roles in modulating paddy soil fertility. Sci Rep 6:20326. https://doi.org/10.1038/srep20326

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  11. Burns KN, Kluepfel DA, Strauss SL, Bokulich NA, Cantu D, Steenwerth KL (2015) Vineyard soil bacterial diversity and composition revealed by 16S rRNA genes: differentiation by geographic features. Soil Biol Biochem 91:232–247. https://doi.org/10.1016/j.soilbio.2015.09.002

    Article  CAS  Google Scholar 

  12. SOP (2021) SOP: Soil pH. Soil lab. University of Illinois Urbana-Champaign., Urbana, IL. https://margenot.cropsciences.illinois.edu/methods-sops. Accessed 20 June 2023

  13. FAO (2021) Standard operating procedure for soil electrical conductivity, soil/water, 1:5. Food and Agriculture Organization of the United Nations (FAO), Rome, Italy

  14. Kuo J, Liu D, Wang SH, Lin CH (2021) Dynamic changes in soil microbial communities with glucose enrichment in sediment microbial fuel cells. Indian J Microbiol 61:497–505. https://doi.org/10.1007/s12088-021-00959-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP (2016) DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods 13:581–583. https://doi.org/10.1038/Nmeth.3869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA et al (2019) Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol 37:852–857. https://doi.org/10.1038/s41587-019-0209-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P et al (2013) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41:D590-596. https://doi.org/10.1093/nar/gks1219

    Article  CAS  PubMed  Google Scholar 

  18. McMurdie PJ, Holmes S (2013) phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One 8:e61217. https://doi.org/10.1371/journal.pone.0061217

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  19. Hui Y (2021) Tutorial for microbiome analysis in R. https://www.yanh.org/2021/01/01/microbiome-r/ Accessed 20 June 2023

  20. R Core Team R (2019) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/. Accessed 20 June 20023

  21. Xu SB, Zhan L, Tang WL, Wang QW, Dai ZH, Zhou L, et al. (2023) MicrobiotaProcess: a comprehensive R package for deep mining microbiome. The Innovation 4(2):00388. https://doi.org/10.1016/j.xinn.2023.100388

  22. Liu C, Cui YM, Li XZ, Yao MJ (2021) microeco: an R package for data mining in microbial community ecology. FEMS Microbiol Ecol 97:fiaa255. https://doi.org/10.1093/femsec/fiaa255

    Article  CAS  PubMed  Google Scholar 

  23. Louca S, Parfrey LW, Doebeli M (2016) Decoupling function and taxonomy in the global ocean microbiome. Science 353:1272–1277. https://doi.org/10.1126/science.aaf4507

    Article  CAS  PubMed  ADS  Google Scholar 

  24. Douglas GM, Maffei VJ, Zaneveld JR, Yurgel SN, Brown JR, Taylor CM et al (2020) PICRUSt2 for prediction of metagenome functions. Nat Biotechnol 38:685–688. https://doi.org/10.1038/s41587-020-0548-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wemheuer F, Taylor JA, Daniel R, Johnston E, Meinicke P, Thomas T, Wemheuer B (2020) Tax4Fun2: prediction of habitat-specific functional profiles and functional redundancy based on 16S rRNA gene sequences. Environ Microbiome 15:1–12. https://doi.org/10.1186/s40793-020-00358-7

    Article  CAS  Google Scholar 

  26. Kuo J, Liu D, Lin CH (2023) Functional prediction of microbial communities in sediment microbial fuel cells. Bioeng-Basel 10:199. https://doi.org/10.3390/bioengineering10020199

    Article  CAS  Google Scholar 

  27. Parks DH, Tyson GW, Hugenholtz P, Beiko RG (2014) STAMP: statistical analysis of taxonomic and functional profiles. Bioinformatics 30:3123–3124. https://doi.org/10.1093/bioinformatics/btu494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Liu C, Ding N, Fu Q, Brookes PC, Xu J, Guo B, Lin Y, Li H, Li N (2016) The influence of soil properties on the size and structure of bacterial and fungal communities along a paddy soil chronosequence. Eur J Soil Biol 76:8. https://doi.org/10.1016/j.ejsobi.2016.06.002

    Article  Google Scholar 

  29. Ma TF, He XH, Chen SG, Li YJ, Huang QW, Xue C, Shen QR (2022) Long-term organic-inorganic fertilization regimes alter bacterial and fungal communities and rice yields in paddy soil. Front Microbiol 13:890712. https://doi.org/10.3389/fmicb.2022.890712

    Article  PubMed  PubMed Central  Google Scholar 

  30. Yin XH, Chen JA, Fan L, Tao Z, Huang M, Zou YB (2020) Nitrospira bacteria in paddy soil reduced by biochar application. Agrosys Geosci Env 3:e20009. https://doi.org/10.1002/agg2.20009

    Article  Google Scholar 

  31. Suzuki K, Takemura M, Miki T, Nonaka M, Harada N (2019) Differences in soil bacterial community compositions in paddy fields under organic and conventional farming conditions. Microbes Environ 34:108–111. https://doi.org/10.1264/jsme2.ME18101

    Article  PubMed  PubMed Central  Google Scholar 

  32. Katayama N, Osada Y, Mashiko M, Baba YG, Tanaka K, Kusumoto Y et al (2019) Organic farming and associated management practices benefit multiple wildlife taxa: a large-scale field study in rice paddy landscapes. J Appl Ecol 56:1970–1981. https://doi.org/10.1111/1365-2664.13446

    Article  Google Scholar 

  33. Gong SX, Zhou XS, Zhu XM, Huo JL, Faghihinia M, Li BL, Zou Y (2023) Organic rice cultivation enhances the diversity of above-ground arthropods but not below-ground soil eukaryotes. Agr Ecosyst Environ 347:108390. https://doi.org/10.1016/j.agee.2023.108390

    Article  CAS  Google Scholar 

  34. Tang ZQ, Zhang LY, He N, Gong DK, Gao H, Ma ZB et al (2021) Soil bacterial community as impacted by addition of rice straw and biochar. Sci Rep-Uk 11:22185. https://doi.org/10.1038/s41598-021-99001-9

    Article  CAS  Google Scholar 

  35. Li R, Khafipour E, Krause DO, Entz MH, de Kievit TR, Fernando WGD (2012) Pyrosequencing reveals the influence of organic and conventional farming systems on bacterial communities. Plos One 7:e51897. https://doi.org/10.1371/journal.pone.0051897

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  36. Heiniger RW, McBride RG, Clay DE (2003) Using soil electrical conductivity to improve nutrient management. Agron J 95:508–519. https://doi.org/10.2134/agronj2003.0508

    Article  CAS  Google Scholar 

  37. Xu D, Liu ST, Chen Q, Ni JR (2017) Microbial community compositions in different functional zones of Carrousel oxidation ditch system for domestic wastewater treatment. Amb Express 7:1–13. https://doi.org/10.1186/s13568-017-0336-y

    Article  CAS  Google Scholar 

  38. Cai CG, Zhao MM, Yao F, Zhu RY, Cai HY, Shao SQ et al (2022) Deoxynivalenol degradation by various microbial communities and its impacts on different bacterial flora. Toxins 14:537. https://doi.org/10.3390/toxins14080537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kojima H, Watanabe T, Fukui M (2016) Sulfuricaulis limicola gen. nov., sp nov., a sulfur oxidizer isolated from a lake. Int J Syst Evol Micr 66:266–270. https://doi.org/10.1099/ijsem.0.000709

    Article  CAS  Google Scholar 

  40. Brewer TE, Aronson EL, Arogyaswamy K, Billings SA, Botthoff JK, Campbell AN et al (2019) Ecological and genomic attributes of novel bacterial taxa that thrive in subsurface soil horizons. Mbio 10:10–1128. https://doi.org/10.1128/mBio.01318-19

    Article  Google Scholar 

  41. Steger K, Kim AT, Ganzert L, Grossart HP, Smart DR (2019) Floodplain soil and its bacterial composition are strongly affected by depth. FEMS Microbiol Ecol 95:fiz014. https://doi.org/10.1093/femsec/fiz014

    Article  CAS  PubMed  Google Scholar 

  42. Li WH, Siddique MS, Liu MJ, Graham N, Yu WZ (2022) The migration and microbiological degradation of dissolved organic matter in riparian soils. Water Res 224:119080. https://doi.org/10.1016/j.watres.2022.119080

    Article  CAS  PubMed  Google Scholar 

  43. Henry EA, Devereux R, Maki JS, Gilmour CC, Woese CR, Mandelco L et al (1994) Characterization of a new thermophilic sulfate-reducing bacterium - Thermodesulfovibrio yellowstonii, gen-nov and sp-nov - its phylogenetic relationship to thermodesulfobacterium commune and their origins deep within the bacterial domain. Arch Microbiol 161:62–69. https://doi.org/10.1007/Bf00248894

    Article  CAS  PubMed  Google Scholar 

  44. Arshad A, Martins PD, Frank J, Jetten MSM, den Camp HJMO, Welte CU (2017) Mimicking microbial interactions under nitrate-reducing conditions in an anoxic bioreactor: enrichment of novel Nitrospirae bacteria distantly related to Thermodesulfovibrio. Environ Microbiol 19:4965–4977. https://doi.org/10.1111/1462-2920.13977

    Article  CAS  PubMed  Google Scholar 

  45. Sekiguchi Y, Yamada T, Hanada S, Ohashi A, Harada H, Kamagata Y (2003) Anaerolinea thermophila gen. nov., sp nov and Caldilinea aerophila gen. nov., sp nov., novel filamentous thermophiles that represent a previously uncultured lineage of the domain Bacteria at the subphylum level. Int J Syst Evol Micr 53:1843–1851. https://doi.org/10.1099/ijs.0.02699-0

    Article  CAS  Google Scholar 

  46. Liang B, Wang LY, Mbadinga SM, Liu JF, Yang SZ, Gu JD, Mu BZ (2015) Anaerolineaceae and Methanosaeta turned to be the dominant microorganisms in alkanes-dependent methanogenic culture after long-term of incubation. Amb Express 5:1–13. https://doi.org/10.1186/s13568-015-0117-4

    Article  CAS  Google Scholar 

  47. Liang B, Wang LY, Zhou ZC, Mbadinga SM, Zhou L, Liu JF et al (2016) High frequency of Thermodesulfovibrio spp. and Anaerolineaceae in association with Methanoculleus spp. in a long-term incubation of n-alkanes-degrading methanogenic enrichment culture. Front Microbiol 7:1431. https://doi.org/10.3389/fmicb.2016.01431

    Article  PubMed  PubMed Central  Google Scholar 

  48. MaymoGatell X, Chien YT, Gossett JM, Zinder SH (1997) Isolation of a bacterium that reductively dechlorinates tetrachloroethene to ethene. Science 276:1568–1571. https://doi.org/10.1126/science.276.5318.1568

    Article  CAS  PubMed  Google Scholar 

  49. Zhang SY, Xiao X, Chen SC, Zhu YG, Sun GX, Konstantinidis KT (2021) High arsenic levels increase activity rather than diversity or abundance of arsenic metabolism genes in paddy soils. Appl Environ Microb 87:e01383-21. https://doi.org/10.1128/AEM.01383-21

    Article  CAS  Google Scholar 

  50. Huber KJ, Geppert AM, Gross U, Luckner M, Wanner G, Cooper P et al (2017) Aridibacter nitratireducens sp nov., a member of the family Blastocatellaceae, class Blastocatellia, isolated from an African soil. Int J Syst Evol Micr 67:4487–4493. https://doi.org/10.1099/ijsem.0.002318

    Article  CAS  Google Scholar 

  51. Gonzalez-Pimentel JL, Martin-Pozas T, Jurado V, Miller AZ, Caldeira AT, Fernandez-Lorenzo O et al (2021) Prokaryotic communities from a lava tube cave in La Palma Island (Spain) are involved in the biogeochemical cycle of major elements. Peerj 9:e11386. https://doi.org/10.7717/peerj.11386

    Article  PubMed  PubMed Central  Google Scholar 

  52. Nguyen QA (2022) Microbial community analysis using next-generation sequencing and bioinformatics tools to better understand biological waste and wastewater treatment. Dissertation, University of Technology Sydney

  53. Fukunaga Y, Ichikawa N (2014) The class holophagaceae. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F (eds) The Prokaryotes. Springer, Berlin, Heidelberg. pp 683–687. https://doi.org/10.1007/978-3-642-38954-2_161

  54. Jones RT, Robeson MS, Lauber CL, Hamady M, Knight R, Fierer N (2009) A comprehensive survey of soil acidobacterial diversity using pyrosequencing and clone library analyses. ISME J 3:442–453. https://doi.org/10.1038/ismej.2008.127

    Article  CAS  PubMed  Google Scholar 

  55. Navarrete AA, Venturini AM, Meyer KM, Klein AM, Tiedje JM, Bohannan BJM et al (2015) Differential response of acidobacteria subgroups to forest-to-pasture conversion and their biogeographic patterns in the Western Brazilian Amazon. Front Microbiol 6:1443. https://doi.org/10.3389/fmicb.2015.01443

    Article  PubMed  PubMed Central  Google Scholar 

  56. Rajer FU, Samma MK, Ali Q, Rajar WA, Wu HJ, Raza W et al (2022) Bacillus spp.-mediated growth promotion of rice seedlings and suppression of bacterial blight disease under greenhouse conditions. Pathogens 11:1251. https://doi.org/10.3390/pathogens11111251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kanehisa M, Goto S, Sato Y, Furumichi M, Tanabe M (2012) KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res 40:D109-114. https://doi.org/10.1093/nar/gkr988

    Article  CAS  PubMed  Google Scholar 

  58. Caspi R, Billington R, Fulcher CA, Keseler IM, Kothari A, Krummenacker M et al (2018) The MetaCyc database of metabolic pathways and enzymes. Nucleic Acids Res 46:D633–D639. https://doi.org/10.1093/nar/gkx935

    Article  CAS  PubMed  Google Scholar 

  59. Uhlik O, Wald J, Strejcek M, Musilova L, Ridl J, Hroudova M et al (2012) Identification of bacteria utilizing biphenyl, benzoate, and naphthalene in long-term contaminated soil. PLoS One 7:e40653. https://doi.org/10.1371/journal.pone.0040653

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  60. Djemiel C, Maron PA, Terrat S, Dequiedt S, Cottin A, Ranjard L (2022) Inferring microbiota functions from taxonomic genes: a review. Gigascience 11:giab090. https://doi.org/10.1093/gigascience/giab090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Chien-Ni Wei for her correction on English writing.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by W.H.W., C.Y.C., W.C., Y.W.W., F.-T.L., and C.-H.L. The first draft of the manuscript was written by J.K., D.L., and C.-H.L. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Chorng-Horng Lin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Enderson Ferreira

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuo, J., Liu, D., Wen, W.H. et al. Different microbial communities in paddy soils under organic and nonorganic farming. Braz J Microbiol 55, 777–788 (2024). https://doi.org/10.1007/s42770-023-01218-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42770-023-01218-5

Keywords

Navigation