Skip to main content
Log in

Mycorrhizal fungal communities associated with three metal accumulator plants growing in an abandoned Pb smelting factory

  • Environmental Microbiology - Research Paper
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Plants associated with mycorrhizal fungi has the ability to establish on metal-contaminated soils playing an important role in phytoremediation programs. The objective of this study was to examine the presence of arbuscular mycorrhizal fungi (AMF) (spores density, diversity, indicator species, and root colonization) and dark septate endophytic fungi (DSE fungal root colonization) in three metal accumulator plants (Sorghum halepense, Bidens pilosa, and Tagetes minuta) growing in soils with high Pb content. The Pb content in AMF spores and plant biomass were also assessed. Rhizosphere soil samples were taken from the three dominant plant species at six study sites surrounding the abandoned Pb smelter and one uncontaminated site. The three studied plants were colonized by AMF and DSE fungi. A total of 24 AMF morphospecies were present in the Pb-contaminated areas. The AMF indicator species in the control site (non-contaminated area) was Funneliformis mosseae and in the most contaminated site were Gigaspora decipiens and Denticustata biornata. There was an increase in mycorrhizal variables such as the number of AMF vesicles, spore number, Pb content in AMF spores and plant biomass and DSE colonization (in Sorghum) with increasing soil Pb contamination, but a decrease in AMF diversity and richness was found. For upcoming soil restoration projects, it is crucial to understand the mycorrhizal fungi as well as the plant community that has adapted to the highly contaminated environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

All data generated or analysed during this study are included in this published article and its supplementary information files.

References

  1. Pepper IL, Gerba CP, Newby DT, Rice CW (2009) Soil: a public health threat or savior? Critical Rev Environ Sci and Tech 39:416–432. https://doi.org/10.1080/10643380701664748

    Article  Google Scholar 

  2. FAO and ITPS (2015) Status of the World’s Soil Resources (SWSR) - Main Report. Rome, Italy, Food and Agriculture Organization of the United Nations and Intergovernmental Technical Panel on Soils. http://www.fao.org/3/a-i5199e.pdf. Accessed 12.02.2022

  3. FAO and UNEP (2021) Global Assessment of Soil Pollution – Summary for Policy Makers. FAO, Rome. https://doi.org/10.4060/cb4827en

    Book  Google Scholar 

  4. Swartjes FA (2011) Dealing with contaminated sites: from theory towards practical application. Springer Science and Business Media. https://doi.org/10.1007/978-90-481-9757-6

  5. Podolský F, Ettler V, Šebek O, Ježek J, Mihaljevič M, Kříbek B, Sracek O, Vaněk A, Penížek V, Majer V, Mapani B, Kamona F, Nyambe I (2015) Mercury in soil profiles from metal mining and smelting areas in Namibia and Zambia: distribution and potential sources. J Soils Sediments 15:648–658. https://doi.org/10.1007/s11368-014-1035-9

    Article  CAS  Google Scholar 

  6. Strzebońska M, Jarosz-Krzemińska E, Adamiec E (2017) Assessing historical mining and smelting effects on heavy metal pollution of river systems over span of two decades. Water Air Soil Pollut 228:141. https://doi.org/10.1007/s11270-017-3327-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Adnan M, Xiao B, Xiao P, Zhao P, Li R, Bibi S (2022) Research progress on heavy metals pollution in the soil of smelting sites in China. Toxics 10:231. https://doi.org/10.3390/toxics10050231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Karri V, Schuhmacher M, Kumar V (2016) Heavy metals (Pb, Cd, As and MeHg) as risk factors for cognitive dysfunction: A general review of metal mixture mechanism in brain. Environ Toxicol Pharmacol 48:203–213. https://doi.org/10.1016/j.etap.2016.09.016

    Article  CAS  PubMed  Google Scholar 

  9. Rosas M, Prado F, Hilal M, Pagano E, Prado C (2014) Phytoremediation: strategies of Argentinean plants against stress by heavy metals, In: Alvarez A, Polti MA (eds) Bioremediation in Latin America Current Research and Perspectives, pp 123–134. https://doi.org/10.1007/978-3-319-05738-5_7

  10. Tangahu BV, Abdullah SRS, Basri H, Idris M, Anuar N, Mukhlisin M (2011) A Review on Heavy Metals (As, Pb, and Hg) Uptake by Plants through Phytoremediation. Int J Chem Engin 939161. https://doi.org/10.1155/2011/939161

  11. Janoušková M, Pavlíkova D, Macek T, Vosátka M (2005) Influence of arbuscular mycorrhiza on the growth and cadmium uptake of tobacco with inserted metallothionein gene. App Soil Ecol 29:209–214. https://doi.org/10.1016/j.apsoil.2004.12.006

    Article  Google Scholar 

  12. Hildebrandt U, Regvar M, Bothe H (2007) Arbuscular mycorrhiza and heavy metal tolerance. Phytochem 68:139–146. https://doi.org/10.1016/j.phytochem.2006.09.023

    Article  CAS  Google Scholar 

  13. Miransari M (2011) Hyperaccumulators, arbuscular mycorrhizal fungi and stress of heavy metals. Biotech Adv 29:645–653. https://doi.org/10.1016/j.biotechadv.2011.04.006

    Article  CAS  Google Scholar 

  14. Chatterjee S, Sau GB, Mukherjee SK (2009) Plant growth promotion by a hexavalent chromium reducing bacterial strain, Cellulosimicrobium cellulans KUCr3. World J Microbiol Biotechnol 25:1829–1836. https://doi.org/10.1007/s11274-009-0084-5

    Article  CAS  Google Scholar 

  15. Gao Y, Miao C, Mao L, Zhou P, Jin Z, Shi W (2010) Improvement of phytoextraction and antioxidative defense in Solanum nigrum L. under cadmium stress by application of cadmium-resistant strain and citric acid. J Hazard Mat 181:771–777. https://doi.org/10.1016/j.jhazmat.2010.05.080

    Article  CAS  Google Scholar 

  16. De Souza LA, De Andrade SAL, De Souza SCR, Schiavinato MA (2012) Arbuscular mycorrhiza confers Pb tolerance in Calopogonium mucunoides. Acta Physiol Plant 34:523–531. https://doi.org/10.1007/s11738-011-0849-y

    Article  CAS  Google Scholar 

  17. Wang F (2017) Occurrence of arbuscular mycorrhizal fungi in mining-impacted sites and their contribution to ecological restoration: Mechanisms and applications. Crit Rev in Environ Sci Tech 47:1901–1957. https://doi.org/10.1080/10643389.2017.1400853

    Article  Google Scholar 

  18. Wang F, Adams CA, Yang W, Sun Y, Shi Z (2020) Benefits of arbuscular mycorrhizal fungi in reducing organic contaminant residues in crops: Implications for cleaner agricultural production. Crit Rev in Environ Sci Tech 50(15):1580–1612. https://doi.org/10.1080/10643389.2019.1665945

    Article  CAS  Google Scholar 

  19. Leung HM, Ye ZH, Wong MH (2006) Interactions of mycorrhizal fungi with Pteris vittata (As hyperaccumulator) in As-contaminated soil. Environ Pollut 139:1–8. https://doi.org/10.1016/j.envpol.2005.05.009

    Article  CAS  PubMed  Google Scholar 

  20. Cornejo P, Meier S, Borie G, Rillig MC, Borie F (2008) Glomalin-related soil protein in a Mediterranean ecosystem affected by a copper smelter and its contribution to Cu and Zn sequestration. Sci Total Environ 406:154–160. https://doi.org/10.1016/j.scitotenv.2008.07.045

    Article  CAS  PubMed  Google Scholar 

  21. Meier S, Azcón R, Cartes P, Borie F, Cornejo P (2011) Alleviation of Cu toxicity in Oenothera picensis by copper-adapted arbuscular mycorrhizal fungi and treated agrowaste residue. Appl Soil Ecol 48:117–124. https://doi.org/10.1016/j.apsoil.2011.04.005

    Article  Google Scholar 

  22. Meier S, Alvear M, Aguilera P, Ginocchio R, Borie F, Cornejo P (2012) Influence of copper on root exudate patterns in some metallophytes and agricultural plants. Ecotoxicol Environ Saf 75:8–15. https://doi.org/10.1016/j.ecoenv.2011.08.029

    Article  CAS  PubMed  Google Scholar 

  23. Bano SA, Ashfaq D (2013) Role of mycorrhiza to reduce heavy metal stress. Nat Sci 12:16–20. https://doi.org/10.4236/ns.2013.512A003

    Article  CAS  Google Scholar 

  24. Wang FY, Lin XG, Yin R (2007) Effect of arbuscular mycorrhizal fungal inoculation on heavy metal accumulation of maize grown in a naturally contaminated soil. Int J Phytorem 9:345–353. https://doi.org/10.1080/15226510701476214

    Article  CAS  Google Scholar 

  25. Riaz M, Kamran M, Fang Y, Wang Q, Cao H, Yang G, Deng L, Wang Y, Zhou Y, Anastopoulos I, Wang X (2021) Arbuscular mycorrhizal fungi-induced mitigation of heavy metal phytotoxicity in metal contaminated soils: A critical review. J Hazard Mat 402:123919. https://doi.org/10.1016/j.jhazmat.2020.123919

    Article  CAS  Google Scholar 

  26. Andrade SAL, Abreu CA, De Abreu MF, Silveira APD (2004) Influence of lead additions on arbuscular mycorrhiza and Rhizobium symbioses under soybean plants. Appl Soil Ecol 26:123–131. https://doi.org/10.1016/j.apsoil.2003.11.002

    Article  Google Scholar 

  27. Vogel-Mikuš K, Drobne D, Regvar M (2005) Zn, Cd and Pb accumulation and arbuscular mycorrhizal colonisation of pennycress Thlaspi praecox Wulf. (Brassicaceae) from the vicinity of a lead mine and smelter in Slovenia. Environ Pollut 133:233–242. https://doi.org/10.1016/j.envpol.2004.06.021

    Article  CAS  PubMed  Google Scholar 

  28. Nowak J (2007) Effects of cadmium and lead concentrations and arbuscular mycorrhizal on growth, flowering and heavy metal accumulation in scarlet sage (Salvia splendens sello ‘torreador’). Acta Agrobot 60:79–83. https://doi.org/10.5586/aa.2007.009

    Article  Google Scholar 

  29. Sudová R, Pavlíková D, Macek T, Vosátka M (2007) The effect of EDDS chelate and inoculation with the arbuscular mycorrhizal fungus Glomus intraradices on the efficacy of lead phytoextraction by two tobacco clones. Appl Soil Ecol 35:163–173. https://doi.org/10.1016/j.apsoil.2006.04.004

    Article  Google Scholar 

  30. Zhang Y, Li T, Zhao Z-W (2013) Colonization characteristics and composition of Dark Septate Endophytes (DSE) in a lead and zinc slag heap in Southwest China. Soil Sediment Cont: An Int J 22:532–545. https://doi.org/10.1080/15320383.2013.750267

    Article  CAS  Google Scholar 

  31. Mandyam K, Jumpponen A (2005) Seeking the elusive function of the root colonising dark septate endophytic fungi. Stud Mycol 53:173–189. https://doi.org/10.3114/sim.53.1.173

    Article  Google Scholar 

  32. Likar M (2011) Dark Septate Endophytes and Mycorrhizal Fungi of Trees Affected by Pollution. In: Pirttilä A, Frank A (eds) Endophytes of Forest Trees. Forestry Sciences, Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1599-8_12

  33. Porras-Alfaro A, Herrera J, Sinsabaugh RL, Odenbach K, Lowrey T, Natvig DO (2008) Novel root fungal consortium associated with a dominant desert grass. Appl Environ Microb 74:2805–2813. https://doi.org/10.1128/AEM.02769-07

    Article  CAS  Google Scholar 

  34. Newsham KK (2011) A meta-analysis of plant responses to dark septate root endophytes. New Phytol 190:783–793. https://doi.org/10.1111/j.1469-8137.2010.03611.x

    Article  CAS  PubMed  Google Scholar 

  35. Salazar MJ, Pignata ML (2014) Lead accumulation in plants grown in polluted soils. Screening of native species for phytoremediation. J Geochem Explor 137:29–36. https://doi.org/10.1016/j.gexplo.2013.11.003

    Article  CAS  Google Scholar 

  36. Salazar MJ, Menoyo E, Faggioli V, Geml J, Cabello M, Rodriguez JH, Marro N, Pardo A, Pignata ML, Becerra AG (2018) Pb accumulation in spores of arbuscular mycorrhizal fungi. Sci Total Environ 643:238–246. https://doi.org/10.1016/j.scitotenv.2018.06.199

    Article  CAS  PubMed  Google Scholar 

  37. Faggioli V, Menoyo E, Geml J, Kemppainen M, Pardo A, Salazar J, Becerra AG (2019) Soil lead-pollution modifies the structure of arbuscular mycorrhizal fungal communities. Mycorrhiza 29:363–373. https://doi.org/10.1007/s00572-019-00895-1

    Article  CAS  PubMed  Google Scholar 

  38. Schneider J, Oliveira LM, Stürmer SL, Soares CRFS, Guilherme LRG (2012) Tropical pteridophytes species in association with arbuscular mycorrhizal fungi in arsenic contaminated arsenic contaminated soil. Quim Nova 35:709–714. https://doi.org/10.1590/S0100-40422012000400010inPortuguese

    Article  CAS  Google Scholar 

  39. Bahraminia M, Zarei M, Ronaghi A, Ghasemi-Fasaei R (2016) Effectiveness of arbuscular mycorrhizal fungi in phytoremediation of lead- contaminated soil by vetiver grass. Int J Phytoremediation 18:730–737. https://doi.org/10.1080/15226514.2015.1131242

    Article  CAS  PubMed  Google Scholar 

  40. Becerra AG, Daga C, Murialdo R, Faggioli V, Menoyo E, Salazar J (2021) Algas y Cyanobacteria presentes en la rizosfera de plantas acumuladoras de plomo. Bol Soc Arg Bot 56(1):3–16. https://doi.org/10.31055/1851.2372.v56.n1.29317

    Article  Google Scholar 

  41. Phillips JM, Hayman DS (1970) Improved procedures for clearing roots and staining parasitic and vesicular–arbuscular mycorrhizal fungi for rapid assessment of infection. Trans Br Mycol Soc 55:158–163. https://doi.org/10.1016/S0007-1536(70)80110-3

    Article  Google Scholar 

  42. Grace C, Stribley D (1991) A safer procedure for routine staining of vesicular-arbuscular mycorrhizal fungi. Mycol Res 95:1160–1162. https://doi.org/10.1016/S0953-7562(09)80005-1

    Article  Google Scholar 

  43. McGonigle TP, Miller MH, Evans DG, Fairchild GL, Swan JA (1990) A new method which gives an objective measure of colonisation of roots by vesicular - arbuscular mycorrhizal fungi. New Phytol 115:495–501. https://doi.org/10.1111/j.1469-8137.1990.tb00476.x

    Article  CAS  PubMed  Google Scholar 

  44. Gerdemann JW, Nicolson TH (1963) Spores of mycorrhizal endogene species extracted from soil by wet sieving and decanting. Trans Br Mycol Soc 46:235–244. https://doi.org/10.1016/S0007-1536(63)80079-0

    Article  Google Scholar 

  45. Walker C, Mize W, McNabb HS (1982) Populations of endogonaceous fungi at two populations in central Iowa. Can J Bot 60:2518–2529. https://doi.org/10.1139/b82-305

    Article  Google Scholar 

  46. Omar MB, Bolland L, Heather WA (1979) P.V.A. (polivinil alcohol). A permanent mounting medium for fungi. Bull Brit Mycol Soc 13:31–32

    Article  Google Scholar 

  47. Redecker D, Schüßler A, Stockinger H, Sturmer SL, Morton JB, Walker C (2013) An evidence-based consensus for the classification of arbuscular mycorrhizal fungi (Glomeromycota). Mycorrhiza 23:515–531. https://doi.org/10.1007/s00572-013-0486-y

    Article  PubMed  Google Scholar 

  48. Schenck NC, Perez Y (1988) A Manual of Identification of Vesicular-Arbuscular Mycorrhizal Fungi, 2nd edn. University of Florida, Gainesville

    Google Scholar 

  49. Magurran AE (1988) Ecological diversity and its measurement. Princenton University Press, Princenton

    Book  Google Scholar 

  50. Wannaz ED, Carreras H, Abril GA, Pignata ML (2011) Maximum values of Ni2+, Cu2+, Pb2+ and Zn2+ in the biomonitor Tillandsia capillaris (Bromeliaceae): Relationship with cell membrane damage. Environ Exp Bot 74:296–301. https://doi.org/10.1016/j.envexpbot.2011.06.012

    Article  CAS  Google Scholar 

  51. Pérez CA, Radtke M, Sánchez HJ, Tolentino H, Neuenshwander RT, Barg W, Rubio M, Silveira Bueno MI, Raimundo I, Rohwedder JJ (1999) Synchrotron radiation X-Ray fluorescence at the LNLS: beamline instrumentation and experiments. X-Ray Spectrom: Int J 28(5):320–326

    Article  Google Scholar 

  52. Di Rienzo JA, Casanoves F, Balzarini MG, Gonzalez L, Tablada M, Robledo CW (2018) InfoStat versión 2018. Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina. http://www.infostat.com.ar

  53. Di Rienzo JA, Guzmán AW, Casanoves F (2002) A multiple-comparisons method based on the distribution of the root node distance of a binary tree. J Agric Biol Environ Stat 7:129–142. https://doi.org/10.1198/10857110260141193

    Article  Google Scholar 

  54. Anderson MJM (2001) A new method for non-parametric multivariate analysis of variance. Austral Ecol 26:32–46. https://doi.org/10.1111/j.1442-9993.2001.tb00081.x

    Article  Google Scholar 

  55. Robert DW (2019) labdsv: Ordination and multivariate analysis for ecology. R package version 2.0–1. https://CRAN.R-project.org/package=labdsv. Accessed 04.02.2021

  56. Dufrêne M, Legendre P (1997) Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol Monog 67:345–366. https://doi.org/10.1890/0012-9615

    Article  Google Scholar 

  57. Huang R-H, Lu Y-M, Yang H-L, Huang W, Chen K (2016) Effects of arbuscular mycorrhizal fungi on caesium accumulation and the ascorbate-glutathione cycle of Sorghum halepense. Sci Asia 42:323–331. https://doi.org/10.2306/scienceasia1513-1874.2016.42.323

    Article  CAS  Google Scholar 

  58. Wang B, Qui Y-L (2006) Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza 16:299–363. https://doi.org/10.1007/s00572-005-0033-6

    Article  CAS  PubMed  Google Scholar 

  59. Nikolić M, Stevović S (2015) Family Asteraceae as a sustainable planning tool in phytoremediation and its relevance in urban areas. Urban For Urban Green 14:782–789. https://doi.org/10.1016/j.ufug.2015.08.002

    Article  Google Scholar 

  60. Scotti A, Silvani VA, Cerioni J, Visciglia M, Benavidez M, Godeas A (2019) Pilot testing of a bioremediation system for water and soils contaminated with heavy metals: vegetable depuration module. Int J Phytorem 21:899–907. https://doi.org/10.1080/15226514.2019.1583634

    Article  CAS  Google Scholar 

  61. Abdel-Salam E, Alatar A, El-Sheikh MA (2018) Inoculation with arbuscular mycorrhizal fungi alleviates harmful effects of drought stress on damask rose. Saudi J Biol Sci 25:1772–1780. https://doi.org/10.1016/j.sjbs.2017.10.015

    Article  PubMed  Google Scholar 

  62. Huo L, Gao R, Hou X, Yu X, Yang X (2021) Arbuscular mycorrhizal and dark septate endophyte colonization in Artemisia roots responds differently to environmental gradients in eastern and central China. Sci Total Environ 795:148808. https://doi.org/10.1016/j.scitotenv.2021.148808

    Article  CAS  PubMed  Google Scholar 

  63. Smith SE, Read DJ (2008) Mycorrhizal symbiosis. Academic press, Cambridge, UK

    Google Scholar 

  64. Yang Y, Han X, Liang Y, Ghosh A, Chen J, Tang M (2015) The combined effects of Arbuscular Mycorrhizal Fungi (AMF) and Lead (Pb) Stress on Pb accumulation. Plant growth parameters, photosynthesis, and antioxidant enzymes in Robinia pseudoacacia L. PLoS One 10:e0145726. https://doi.org/10.1371/journal.pone.0145726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Gohre V, Paszkowski U (2006) Contribution of the arbuscular mycorrhizal symbiosis to heavy metal phytoremediation. Planta 223:1115–1122. https://doi.org/10.1007/s00425-006-0225-0

    Article  CAS  PubMed  Google Scholar 

  66. Shadmani L, Jamali S, Fatemi A (2021) Isolation, identification, and characterization of cadmium-tolerant endophytic fungi isolated from barley (Hordeum vulgare L.) roots and their role in enhancing phytoremediation. Braz J Microbiol 52:1097–1106. https://doi.org/10.1007/s42770-021-00493-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Kumar S, Muthukumar T (2014) Arbuscular mycorrhizal and dark septate endophyte fungal associations in south indian aquatic and wetland macrophytes. J Bot 2:1–14. https://doi.org/10.1155/2014/173125

    Article  Google Scholar 

  68. Schmidt SK, Sobieniak-Wiseman LC, Kageyama SA, Halloy SRP, Schadt CW (2008) Mycorrhizal and dark-septate fungi in plant roots above 4270 meters elevation in the andes and rocky mountains. Arct Alp Res 40:576–583

    Article  Google Scholar 

  69. Čevnik M, Jurc M, Vodnik D (2000) Filamentous fungi associated with the fine roots of Erica herbacea L. from the area influenced by the Žerjav lead smelter (Slovenia). Phyt Ann Rei Bot 40:61–64

    Google Scholar 

  70. Malicka M, Magurno F, Piotrowska-Seget Z (2022) Plant association with dark septate endophytes: when the going gets tough (and stressful), the tough fungi get going. Chemosphere 302:134830. https://doi.org/10.1016/j.chemosphere.2022.134830

    Article  CAS  PubMed  Google Scholar 

  71. Addy HD, Piercey MM, Currah RS (2005) Microfungal endophytes in roots. Can J Bot 83:1–13. https://doi.org/10.1139/b04-171

    Article  Google Scholar 

  72. Peterson RL, Wagg C, Pautler M (2008) Associations between microfungal endophytes and roots: do structural features indicate function? Botany 86:445–456. https://doi.org/10.1139/B08-016

    Article  CAS  Google Scholar 

  73. Li BK, He XL, He C, Chen YY, Wang XQ (2015) Spatial dynamics of dark septate endophytes and soil factors in the rhizosphere of Ammopiptanthus mongolicus in Inner Mongolia, China. Symbiosis 65:75–84. https://doi.org/10.1007/s13199-015-0322-6

    Article  Google Scholar 

  74. Eisenman HC, Casadevall A (2012) Synthesis and assembly of fungal melanin. Appl Microbiol Biotechnol 93:931–940. https://doi.org/10.1007/s00253-011-3777-2

    Article  CAS  PubMed  Google Scholar 

  75. Berthelot C, Perrin Y, Leyval C, Blaudez D (2017) Melanization and ageing are not drawbacks for successful agro-transformation of dark septate endophytes. Fungal Biol 121:652–663. https://doi.org/10.1016/j.funbio.2017.04.004

    Article  CAS  PubMed  Google Scholar 

  76. Begum N, Qin C, Ahanger MA, Raza S, Khan MI, Ashraf M, Ahmed N, Zhang L (2019) Role of Arbuscular mycorrhizal fungi in plant growth regulation: implications in Abiotic stress tolerance. Front Plant Sci 10:1068. https://doi.org/10.3389/fpls.2019.01068

    Article  PubMed  PubMed Central  Google Scholar 

  77. Khade S, Adholeya A (2009) Arbuscular mycorrhizal association in plants growing on metal contaminated and noncontaminated soils adjoining Kanpur tanneries, Uttar Pradesh, India. Water Air Soil Pollut 202:45–56. https://doi.org/10.1007/s11270-008-9957-8

    Article  CAS  Google Scholar 

  78. Weissenhorn I, Leyval C, Belgy G, Betherlin J (1995) Arbuscular mycorrhizal contribution to heavy metal uptake by maize (Zea mays L.) in pot culture with contaminated soil. Mycorrhiza 5:245–251. https://doi.org/10.1007/BF00204957

    Article  CAS  Google Scholar 

  79. Krishnamoorthy R, Kim C-G, Subramanian P, Kim K-Y, Gopal Selvakumar Sa T-M (2015) Arbuscular mycorrhizal fungi community structure, abundance and species richness changes in soil by different levels of heavy metal and metalloid concentration. PLoS One 10:e0128784. https://doi.org/10.1371/journal.pone.0128784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Del Val C, Barea JM, Azcon-Aguilar C (1999) Diversity of arbuscular mycorrhizal fungus populations in heavy-metal-contaminated soils. Appl Environ Microbiol 65:718–723. https://doi.org/10.1128/AEM.65.2.718-723.1999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Shetty KG, Hetrick BAD, Figge DAH, Schwab AP (1994) Effects of mycorrhizae and other soil microbes on revegetation of heavy metal contaminated mine spoil. Environ Pollut 86:181–188. https://doi.org/10.1016/0269-7491(94)90189-9

    Article  CAS  PubMed  Google Scholar 

  82. Aggangan NS, Dell B, Malajczuk N (1997) Effects of chromium and nickel on growth of the ectomycorrhizal fungus Pisolithus and formation of ectomycorrhizas on Eucalyptus urophylla S.T. Blake Geoderma 84:15–27

    Article  Google Scholar 

  83. Lopes Leal P, Varón-López M, de Oliveira G, Prado I, Valentim Dos Santos J, Fonsêca Sousa Soares CR, Siqueira JO, de Souza Moreira FM (2016) Enrichment of arbuscular mycorrhizal fungi in a contaminated soil after rehabilitation. Braz J Microbiol 47:853–862. https://doi.org/10.1016/j.bjm.2016.06.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Gratão PL, Prasad MNV, Cardoso PF, Lea PJ, Azevedo RA (2005) Phytoremediation: green technology for the clean up or toxic metals in the environment. Braz J Plant Physiol 17:53–64. https://doi.org/10.1590/S1677-04202005000100005

    Article  Google Scholar 

  85. Pawlowska TE, Charvat I (2004) Heavy-metal stress and developmental patterns of arbuscular mycorrhizal fungi. Appl Environ Microbiol 70:6643–6649. https://doi.org/10.1128/AEM.70.11.6643-6649.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Zarei M, Hempel S, Wubet T, Schäfer T, Savaghebi G, Jouzani GS, Nekouei MK, Buscot F (2010) Molecular diversity of arbuscular mycorrhizal fungi in relation to soil chemical properties and heavy metal contamination. Environ Pollution 158:2757–2765. https://doi.org/10.1016/j.envpol.2010.04.017

    Article  CAS  Google Scholar 

  87. Hassan SED, Boon EVA, ST-Arnaud M, Hijri M (2011) Molecular biodiversity of arbuscular mycorrhizal fungi in trace metal polluted soils. Mol Ecol 20:3469–3483. https://doi.org/10.1111/j.1365-294X.2011.05142.x

    Article  CAS  PubMed  Google Scholar 

  88. Schneider J, Stürmer SL, Guilherme LR, de Souza Moreira FM, Soares CR (2013) Arbuscular mycorrhizal fungi in arsenic-contaminated areas in Brazil. J Hazard Mater 262:1105–1115. https://doi.org/10.1016/j.jhazmat.2012.09.063

    Article  CAS  PubMed  Google Scholar 

  89. Dietterich LH, Gonneau C, Casper BB (2017) Arbuscular mycorrhizal colonization has little consequence for plant heavy metal uptake in contaminated field soils. Ecol Appl 27:1862–1875. https://doi.org/10.1002/eap.1573

    Article  PubMed  PubMed Central  Google Scholar 

  90. Demirezen D, Aksoy A (2006) Common hydrophytes as bioindicators of iron and manganese pollutions. Ecol Indic 6:388–393. https://doi.org/10.1016/j.ecolind.2005.04.004

    Article  CAS  Google Scholar 

  91. Cornejo P, Pérez-Tienda J, Meier S, Valderas A, Borie F, Azcón-Aguilar C, Ferrol N (2013) Copper compartmentalization in spores as a survival strategy of arbuscular mycorrhizal fungi in Cu-polluted environments. Soil Biol Biochem 57:925–928. https://doi.org/10.1016/j.soilbio.2012.10.031

    Article  CAS  Google Scholar 

  92. Joner EJ, Briones R, Leyval C (2000) Metal-binding capacity of arbuscular mycorrhizal mycelium. Plant Soil 226:227–234. https://doi.org/10.1023/A:1026565701391

    Article  CAS  Google Scholar 

  93. González-Chavez MC, Carrillo-González R, Wright SF, Nichols KA (2004) The role of glomalin, a protein produced by arbuscular mycorrhizal fungi, in sequestering potentially toxic elements. Environ Pollut 130:317–323. https://doi.org/10.1016/j.envpol.2004.01.004

    Article  CAS  PubMed  Google Scholar 

  94. Vodnik D, Grčman H, Maček I, van Elteren JT, Kovačevič M (2008) The contribution of glomalin-related soil protein to Pb and Zn sequestration in polluted soil. Sci Total Environ 392:130–136. https://doi.org/10.1016/j.scitotenv.2007.11.016

    Article  CAS  PubMed  Google Scholar 

  95. González-Chavez C, D’haen J, Vangronsveld J, Dodd JC (2002) Copper sorption and accumulation by the extraradical mycelium of different Glomus spp. (arbuscular mycorrhizal fungi) isolated from the same polluted soil. Plant Soil 240:287–297. https://doi.org/10.1023/A:101579462

    Article  Google Scholar 

  96. Malcová R, Vosatka M, Gryndler M (2003) Effects of inoculation with Glomus intraradices on lead uptake by Zea mays L. and Agrostis capillaris L. App Soil Ecol 23:56–67. https://doi.org/10.1016/S0929-1393(02)00160-9

    Article  Google Scholar 

  97. González-Chávez MCA, Carrillo-González R (2013) Tolerance of Chrysantemum maximum to heavy metals: the potential for its use in the revegetation of tailings heaps. J Environ Sci 25:367–375. https://doi.org/10.1016/S1001-0742(12)60060-6

    Article  CAS  Google Scholar 

  98. Yang Y, Liang Y, Han X, Chiu T-Y, Ghosh A, Chen H, Tang M (2016) The roles of arbuscular mycorrhizal fungi (AMF) in phytoremediation and tree-herb interactions in Pb contaminated soil. Sci Rep 6:20469. https://doi.org/10.1038/srep20469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Christie P, Li X, Chen B (2004) Arbuscular mycorrhiza can depress translocation of zinc to shoots of host plants in soils moderately polluted with zinc. Plant Soil 261:209–217. https://doi.org/10.1023/B:PLSO.0000035542.79345.1b

    Article  CAS  Google Scholar 

  100. Ferrol N, Gonzales-Guerrero M, Valderaz A, Benabdellah K, Azcón-Aguilar C (2009) Survival strategies of arbuscular mycorrhizal fungi in Cu- polluted environments. Phytochem Rev 8:551–559. https://doi.org/10.1007/s11101-009-9133-9

    Article  CAS  Google Scholar 

Download references

Acknowledgements

AGB, EM and MJS are researchers of CONICET. MC is researcher of CIC. Authors are grateful to anonymous referees for critical reading and improving the manuscript.

Funding

This work was supported by the Fondo para la Investigación Científica y Técnica (FONCyT, grant numbers PICT 2013–049, PICT 2018–1081, PICT 2021-0476).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alejandra Gabriela Becerra.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible Editor: Ernani Pinto

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 13 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Becerra, A.G., Menoyo, E., Faggioli, V. et al. Mycorrhizal fungal communities associated with three metal accumulator plants growing in an abandoned Pb smelting factory. Braz J Microbiol 54, 2979–2990 (2023). https://doi.org/10.1007/s42770-023-01147-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42770-023-01147-3

Keywords

Navigation