Skip to main content
Log in

A Novel Dual-Channel Carbon Nitride Homojunction with Nanofibrous Carbon for Significantly Boosting Photocatalytic Hydrogen Peroxide Production

  • Research Article
  • Published:
Advanced Fiber Materials Aims and scope Submit manuscript

Abstract

Photocatalytic H2O2 synthesis (PHS) via graphite carbon nitride (g-C3N4) is a low-carbon and environmentally friendly approach, which has garnered tremendous attention. However, as for the pristine g-C3N4, the PHS is severely constrained by the slow transfer and rapid recombination of photogenerated carriers. Herein, we introduced cellulose-derived carbon nanofibers (CF) into the homojunction of g-C3N4 nanotubes (MCN) and g-C3N4 nanosheets (SCN). A series of photocatalytic results demonstrate that the embedding of cellulose-derived carbon for MCN/SCN/CF composite catalyst significantly improved the photocatalytic H2O2 generation (136.9 μmol·L−1·h−1) with 5-holds higher than that of individual MCN (27.5 μmol·L−1·h−1) without any sacrificial agent. This enhancement can be attributed to the combined effects of the two-step one-electron oxygen reduction reaction (ORR) on conduction band (CB) side and the water oxidation reaction (WOR) on valence band (VB) side. A comprehensive characterization of the mechanism indicates that CF enhances the absorption of light, promotes the separation and migration of photogenerated carriers, and regulates the position of the valence and conduction bands with an effective dual-channel ORR pathway for photo-synthesis of H2O2. This work provides valuable insights into utilizing biomass-based materials for significantly boosting photocatalytic H2O2 production.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 2

Similar content being viewed by others

Data availability

The data substantiating the findings of this study can be accessed from the corresponding author upon a reasonable request.

References

  1. Wei H, Yang H, Zhang X, Zhu J, Qiu P, Luo W. Hydrogen peroxide enabled two-dimensional molybdenum trioxide nanosheet clusters for enhanced surface Li-ion storage. Tungsten. 2021;3:338–47.

    Article  Google Scholar 

  2. Liao G, Li C, Li X, Fang B. Emerging polymeric carbon nitride Z-scheme systems for photocatalysis. Cell Rep Phys Sci. 2021;2: 100355.

    Article  CAS  Google Scholar 

  3. Liao G, Li C, Liu S, Fang B, Yang H. Z-scheme systems: From fundamental principles to characterization, synthesis, and photocatalytic fuel-conversion applications. Phys Rep. 2022;983:1–41.

    Article  CAS  Google Scholar 

  4. Liao G, Li C, Liu S, Fang B, Yang H. Emerging frontiers of Z-scheme photocatalytic systems. Trends Chem. 2022;4:111–27.

    Article  CAS  Google Scholar 

  5. Liang J, Wang F, Li W, Zhang J, Guo C-L. Highly dispersed and stabilized Pd species on H2 pre-treated Al2O3 for anthraquinone hydrogenation and H2O2 production. Mol Catal. 2022;524:112264.

    Article  CAS  Google Scholar 

  6. Dong K, Lei Y, Zhao H, Liang J, Ding P, Liu Q, Xu Z, Lu S, Li Q, Sun X. Noble-metal-free electrocatalysts toward H2O2 production. J Mater Chem A. 2020;8:23123–41.

    Article  CAS  Google Scholar 

  7. Li C, Jia R, Yang Y, Liao G. A hierarchical helical carbon nanotube fiber artificial ligament. Adv Fiber Mater. 2023;5:1549.

    Article  CAS  Google Scholar 

  8. Wen H, Huang S, Meng X, Xian X, Zhao J, Roy VAL. Recent progress in the design of photocatalytic H2O2 synthesis system. Front Chem. 2022;10:1098209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Tzu-Heng W, Min-Jen C, YenJung Sean L, Ruey-an D, Paul W, Bruce R. High-efficiency photocatalytic H2O2 production in a dual optical– and membrane-fiber system. ACS Sustain Chem Eng. 2023;11:6465–73.

    Article  Google Scholar 

  10. Wei W, Zou L, Li J, Hou F, Sheng Z, Li Y, Guo Z, Wei A. Dual molecules engineered carbon nitride for achieving outstanding photocatalytic H2O2 production. J Colloid Interf Sci. 2023;636:537–48.

    Article  CAS  Google Scholar 

  11. Zhang J, Tong T, Zhang L, Li X, Zou H, Yu J. Enhanced performance of planar perovskite solar cell by graphene quantum dot modification. ACS Sustain Chem Eng. 2018;6:8631–40.

    Article  CAS  Google Scholar 

  12. He B, Wang Z, Xiao P, Chen T, Yu J, Zhang L. Cooperative coupling of H2O2 production and organic synthesis over a floatable polystyrene-sphere-supported TiO2/Bi2O3 S-scheme photocatalyst. Adv Mater. 2022;34:2203225.

    Article  CAS  Google Scholar 

  13. Yu W, Hu C, Bai L, Tian N, Zhang Y, Huang H. Photocatalytic hydrogen peroxide evolution: what is the most effective strategy? Nano Energy. 2022;104: 107906.

    Article  CAS  Google Scholar 

  14. Hou H, Zeng X, Zhang X. Production of hydrogen peroxide by photocatalytic processes. Angew Chem Int Ed. 2020;59:17356–76.

    Article  CAS  Google Scholar 

  15. Yong Z, Ma T. Solar-to-H2O2 catalyzed by covalent organic frameworks. Angew Chem Int Ed. 2023;62: e202308980.

    Article  CAS  Google Scholar 

  16. Liao G, Gong Y, Zhang L, Gao H, Yang G, Fang B. Semiconductor polymeric graphitic carbon nitride photocatalysts: the “holy grail” for the photocatalytic hydrogen evolution reaction under visible light. Energy Environ Sci. 2019;12:2080–147.

    Article  CAS  Google Scholar 

  17. Yu L, Yuanfang L, Zonglin W, Bin H, Yang Z, Xinwen O, Jin J. Rational design of donor–acceptor engineered g-C3N4 for boosted H2O2 production via photocatalytic O2 reduction. J Environ Chem Eng. 2023;11: 109426.

    Article  Google Scholar 

  18. Li C, Lu H, Ding G, Li Q, Liao G. Recent advances on g-C3N4-based Z-scheme photocatalysts for organic pollutant removal. Catal Sci Technol. 2023;13:2877–98.

    Article  CAS  Google Scholar 

  19. Che H, Wang J, Gao X, Chen J, Wang P, Liu B, Ao Y. Regulating directional transfer of electrons on polymeric g-C3N5 for highly efficient photocatalytic H2O2 production. J Colloid Interf Sci. 2022;627:739–48.

    Article  CAS  Google Scholar 

  20. Igor K, Ashish V, Dariusz M, Radim B. Benzaldehyde-promoted (auto)photocatalysis under visible light: pitfalls and opportunities in photocatalytic H2O2 production. ChemCatChem. 2022;15: e202201215.

    Google Scholar 

  21. Kelly J, McDonnell C, Skillen N, Manesiotis P, Robertson PKJ. Enhanced photocatalytic degradation of 2-methyl-4-chlorophenoxyacetic acid (MCPA) by the addition of H2O2. Chemosphere. 2021;275: 130082.

    Article  CAS  PubMed  Google Scholar 

  22. Dong J, Zhang Y, Hussain MI, Zhou W, Chen Y, Wang L-N. g-C3N4: properties, pore modifications, and photocatalytic applications. Nanomaterials. 2021;12:121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Jianlong W, Shizong W. A critical review on graphitic carbon nitride (g-C3N4)-based materials: Preparation, modification and environmental application. Coord Chem Rev. 2021;453: 214338.

    Google Scholar 

  24. Kamal Hussien M, Sabbah A, Qorbani M, Hammad Elsayed M, Raghunath P, Lin T-Y, Quadir S, Wang H-Y, Wu H-L, Tzou D-LM, Lin M-C, Chung P-W, Chou H-H, Chen L-C, Chen K-H. Metal-free four-in-one modification of g-C3N4 for superior photocatalytic CO2 reduction and H2 evolution. Chem Eng J. 2021;430:132853.

    Article  Google Scholar 

  25. Wang N, Cheng L, Liao Y, Xiang Q. Effect of functional group modifications on the photocatalytic performance of g-C3N4. Small. 2023;19:2300109.

    Article  CAS  Google Scholar 

  26. Zhao X, Liu Q, Li X, Li H, Shen Z, Ji H, Ma T. Exited state absorption upconversion induced by structural defects for photocatalysis with a breakthrough efficiency. Angew Chem Int Ed. 2023;62: e202219214.

    Article  CAS  Google Scholar 

  27. Shen X, Zhang Y, Duoerkun G, Shi Z, Liu J, Chen Z, Wong PK, Zhang L. Vis-NIR light-responsive photocatalytic activity of C3N4–Ag–Ag2O heterojunction-decorated carbon-fiber cloth as efficient filter-membrane-shaped photocatalyst. ChemCatChem. 2019;11:1362.

    Article  CAS  Google Scholar 

  28. Liu X, Xu S, Chi H, Xu T, Guo Y, Yuan Y, Yang B. Ultrafine 1D graphene interlayer in g-C3N4/graphene/recycled carbon fiber heterostructure for enhanced photocatalytic hydrogen generation. Chem Eng J. 2019;359:1352.

    Article  CAS  Google Scholar 

  29. Zhang J, Huang F. Enhanced visible light photocatalytic H2 production activity of g-C3N4 via carbon fiber. Appl Surf Sci. 2015;358:287.

    Article  CAS  Google Scholar 

  30. Zhou J, Shan T, Luo H, Boury B, Xu X, Wu H, Zhang F, Xiao H. Enhanced single-electron transfer for efficiently photocatalytic H2O2 production over g-C3N4 decorated with TEMPO-oxidized cellulosic carbon. J Environ Chem Eng. 2023;11: 109512.

    Article  CAS  Google Scholar 

  31. Li S, Liu P, Wang Y, Yang Q, Ma Y. Constructing defective-functionalized g-C3N4 homojunction for efficient photocatalytic detoxification of lemon yellow in an aqueous solution and beverage. Food Chem. 2023;422: 136263.

    Article  CAS  PubMed  Google Scholar 

  32. Dang M, Tan G, Wang M, Zhang B, Wang Y, Lv L, Ren H, Xia A. Preparation and photocatalytic enhancement mechanism of g-C3N4/(110) facet BiVO4 heterojunction induced by electrostatic field. Mater Lett. 2021;285:129131.

    Article  CAS  Google Scholar 

  33. Que M, Cai W, Chen J, Zhu L, Yang Y. Recent advances in g-C3N4 composites within four types of heterojunctions for photocatalytic CO2 reduction. Nanoscale. 2021;13:6692–712.

    Article  CAS  PubMed  Google Scholar 

  34. Youlan Z, Haiyan Z, Zhuoran A, Yiyang L, Nantao C, Yuxing H. N-doped porous carbon coated g-C3N4/g-C3N4 heterojunction for polysulfide restriction and catalytic conversion towards enhanced lithium–sulfur batteries. J Alloy Compd. 2023;940: 168772.

    Article  Google Scholar 

  35. Yang Q, Li R, Wei S, Yang R. Schottky functionalized Z-scheme heterojunction photocatalyst Ti2C3/g-C3N4/BiOCl: efficient photocatalytic H2O2 production via two-channel pathway. Appl Surf Sci. 2022;572: 151525.

    Article  CAS  Google Scholar 

  36. Wang J, Yang L, Zhang L. Constructed 3D hierarchical micro-flowers CoWO4@Bi2WO6 Z-scheme heterojunction catalyzer: two-channel photocatalytic H2O2 production and antibiotics degradation. Chem Eng J. 2021;420: 127639.

    Article  CAS  Google Scholar 

  37. Wang X, Han Z, Yu L, Liu C, Liu Y, Wu G. Synthesis of full-spectrum-response Cu2(OH)PO4/g-C3N4 photocatalyst with outstanding photocatalytic H2O2 production performance via a “two channel route.” ACS Sustain Chem Eng. 2018;6:14542–53.

    Article  CAS  Google Scholar 

  38. Zhao Y, Liu Y, Cao J, Wang H, Shao M, Huang H, Liu Y, Kang Z. Efficient production of H2O2 via two-channel pathway over ZIF-8/C3N4 composite photocatalyst without any sacrificial agent. Appl Catal B Environ. 2020;278: 119289.

    Article  CAS  Google Scholar 

  39. Cao J, Wang H, Zhao Y, Liu Y, Wu Q, Huang H, Shao M, Liu Y, Kang Z. Phosphorus-doped porous carbon nitride for efficient sole production of hydrogen peroxide via photocatalytic water splitting with a two-channel pathway. J Mater Chem A. 2020;8:3701–7.

    Article  CAS  Google Scholar 

  40. Yang L, Dong G, Jacobs DL, Wang Y, Zang L, Wang C. Two-channel photocatalytic production of H2O2 over g-C3N4 nanosheets modified with perylene imides. J Catal. 2017;352:274.

    Article  CAS  Google Scholar 

  41. Cao J, Pan C, Ding Y, Li W, Lv K, Tang H. Constructing nitrogen vacancy introduced g-C3N4 p-n homojunction for enhanced photocatalytic activity. J Environ Chem Eng. 2019;7: 102984.

    Article  CAS  Google Scholar 

  42. Liu Z, Wang G, Chen H-S, Yang P. An amorphous/crystalline g-C3N4 homojunction for visible light photocatalysis reactions with superior activity. Chem Commun. 2018;54:4720–3.

    Article  CAS  Google Scholar 

  43. Hong Y, Liu EL, Shi JY, Lin X, Sheng LZ, Zhang M, Wang LY, Chen JH. A direct one-step synthesis of ultrathin g-C3N4 nanosheets from thiourea for boosting solar photocatalytic H2 evolution. Int J Hydrogen Energy. 2019;44:7194–204.

    Article  CAS  Google Scholar 

  44. Zhao Z, Zhang W, Liu W, Li Y, Ye J, Liang J, Tong M. Single-atom silver induced amorphization of hollow tubular g-C3N4 for enhanced visible light-driven photocatalytic degradation of naproxen. Sci Total Environ. 2020;742: 140642.

    Article  CAS  PubMed  Google Scholar 

  45. Song M, Wang J, Chen B, Wang L. A facile, nonreactive hydrogen peroxide (H2O2) detection method enabled by ion chromatography with UV detector. Anal Chem. 2017;89:11537–44.

    Article  CAS  PubMed  Google Scholar 

  46. Sun Z, Wang W, Chen Q, Pu Y, He H, Zhuang W, He J, Huang L. A hierarchical carbon nitride tube with oxygen doping and carbon defects promotes solar-to-hydrogen conversion. J Mater Chem A. 2020;8:3160–7.

    Article  CAS  Google Scholar 

  47. Thangavel N, Pandi K, Shaheer ARM, Neppolian B. Surface-state-induced upward band bending in P doped g-C3N4 for the formation of an isotype heterojunction between bulk g-C3N4 and P doped g-C3N4: photocatalytic hydrogen production. Catal Sci Technol. 2020;10:8015–25.

    Article  CAS  Google Scholar 

  48. Yuchun R, Tao G, Songlin T, Ming C, Fei Z, Yongjun L, Li Y, Qiong P. Photocatalytic activities of g-C3N4, Bi3NbO7 and g-C3N4/Bi3NbO7 in photocatalytic reduction of Cr(VI). J Alloy Compd. 2022;902: 163752.

    Article  Google Scholar 

  49. Wang Q, Fang Z, Zhang W, Zhang D. High-efficiency g-C3N4 based photocatalysts for CO2 reduction: modification methods. Adv Fiber Mater. 2022;4:342.

    Article  CAS  Google Scholar 

  50. Wu L, Zhang Z, Yang M, Yuan J, Li P, Guo F, Men X. One-step synthesis of g-C3N4 nanosheets to improve tribological properties of phenolic coating. Tribol Int. 2019;132:221–7.

    Article  CAS  Google Scholar 

  51. Zhou D, Qiu C. Study on the effect of Co doping concentration on optical properties of g-C3N4. Chem Phys Lett. 2019;728:70–3.

    Article  CAS  Google Scholar 

  52. Zhang J, Wang X, Shen K, Lu W, Wang J, Chen F. Defect engineering in g-C3N4 quantum-dot-modified TiO2 nanofiber: uncovering novel mechanisms for the degradation of tetracycline in coexistence with Cu2+. Adv Fiber Mater. 2022;5:168–82.

    Article  Google Scholar 

  53. Alok KS, Nivedita S, Bharat K, Dinesh KV, Jiya Lal M, Sundaram S, Rashmi BR. Improvement of tribo-active behavior of g-C3N4 nanosheets using m-LaVO4 nanoparticles. Colloid Surface A. 2023;663: 131031.

    Article  Google Scholar 

  54. Yang J, Zhang X, Xie C, Long J, Wang Y, Wei L, Yang X. Preparation of g-C3N4 with high specific surface area and photocatalytic stability. J Electron Mater. 2021;50:1067–74.

    Article  CAS  Google Scholar 

  55. Mohammed I. Facile synthesis of NiO-loaded g-C3N4 heterojunction photocatalyst for efficient photocatalytic degradation of 4-nitrophenol under visible-light irradiation. J Photochem Photobiol A. 2023;439: 114576.

    Article  Google Scholar 

  56. Hu J, Chen C, Yang H, Yang F, Qu J, Yang X, Sun W, Dai L, Li CM. Tailoring well-ordered, highly crystalline carbon nitride nanoarrays via molecular engineering for efficient photosynthesis of H2O2. Appl Catal B Environ. 2022;317: 121723.

    Article  CAS  Google Scholar 

  57. Wang R, Zhang X, Li F, Cao D, Pu M, Han D, Yang J, Xiang X. Energy-level dependent H2O2 production on metal-free, carbon-content tunable carbon nitride photocatalysts. J Energy Chem. 2018;27:343.

    Article  Google Scholar 

  58. Zhang D, Ren P, Liu W, Li Y, Salli S, Han F, Qiao W, Liu Y, Fan Y, Cui Y, Shen Y, Richards E, Wen X, Rummeli MH, Li Y, Besenbacher F, Niemantsverdriet H, Lim T, Su R. Photocatalytic abstraction of hydrogen atoms from water using hydroxylated graphitic carbon nitride for hydrogenative coupling reactions. Angew Chem Int Ed. 2022;61: e202204256.

    Article  CAS  Google Scholar 

  59. Yue J-Y, Song L-P, Fan Y-F, Pan Z-X, Yang P, Ma Y, Xu Q, Tang B. Thiophene-containing covalent organic frameworks for overall photocatalytic H2O2 synthesis in water and seawater. Angew Chem Int Ed. 2023;62: e202309624.

    Article  CAS  Google Scholar 

  60. Zhang Y, Pan C, Bian G, Xu J, Dong Y, Zhang Y, Lou Y, Liu W, Zhu Y. H2O2 generation from O2 and H2O on a near-infrared absorbing porphyrin supramolecular photocatalyst. Nat Energy. 2023;8:361–71.

    Article  CAS  Google Scholar 

  61. Yang M, Hou Z, Zhang X, Gao B, Li Y, Shang Y, Yue Q, Duan X, Xu X. Unveiling the origins of selective oxidation in single-atom catalysis via Co–N4–C intensified radical and nonradical pathways. Environ Sci Technol. 2022;56:11635–45.

    Article  CAS  PubMed  Google Scholar 

  62. Yin K, Wu R, Shang Y, Chen D, Wu Z, Wang X, Gao B, Xu X. Microenvironment modulation of cobalt single-atom catalysts for boosting both radical oxidation and electron-transfer process in Fenton-like system. Appl Catal B Environ. 2023;329: 122558.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of Fujian (2022J01144), State Key Laboratory of Pulp and Paper Engineering (202218), Natural Science Foundation of Shandong (ZR2021MC035), Innovation and Entrepreneurship Training Program for College Students (X202310389326), and State Key Laboratory of New Textile Materials and Advanced Processing Technologies (FZ2022009).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bruno Boury, Yingkui Yang, Guangfu Liao or He Xiao.

Ethics declarations

Conflict of Interest

Guangfu Liao is an editorial board member for Advanced Fiber Materials and was not involved in the editorial review or the decision to publish this article. All authors declare that there are no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1517 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, J., Shan, T., Zhang, F. et al. A Novel Dual-Channel Carbon Nitride Homojunction with Nanofibrous Carbon for Significantly Boosting Photocatalytic Hydrogen Peroxide Production. Adv. Fiber Mater. 6, 387–400 (2024). https://doi.org/10.1007/s42765-023-00354-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42765-023-00354-9

Keywords

Navigation