Skip to main content
Log in

Defect Engineering in g-C3N4 Quantum-Dot-Modified TiO2 Nanofiber: Uncovering Novel Mechanisms for the Degradation of Tetracycline in Coexistence with Cu2+

  • Research Article
  • Published:
Advanced Fiber Materials Aims and scope Submit manuscript

Abstract

Herein, g-C3N4 quantum-dot-modified TiO2 nanofibers were fabricated and used as an efficient photocatalyst for the investigation of the influence of Cu2+ and the interaction mechanism between Cu2+ and surface defects in tetracycline degradation. Results showed that the effect of Cu2+ switched from promoting to inhibiting the tetracycline degradation as the amount of Cu2+ accumulated on the catalyst surface increased. The introduction of surface defects can prevent the inhibiting effect of Cu2+, resulting in the more complete degradation of tetracycline in contrast to the non-defective sample. Theoretical calculations further revealed that the defects can be used to tune the conduction band of the composite, inducing the reduction reaction of Cu2+ and inhibiting the accumulation of Cu on the surface of catalysts. Moreover, the Cu introduced to the catalyst surface provided new active sites, thereby promoting photocatalytic degradation. These findings provide new insights into the design of advanced fiber materials for water purification in complex environments.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Phoon BL, Ong CC, Saheed MSM, Show P-L, Chang J-S, Ling TC, Lam SS, Juan JC. Conventional and emerging technologies for removal of antibiotics from wastewater. J Hazard Mater 2020;400:122961.

    Article  Google Scholar 

  2. Watkinson A, Murby E, Costanzo S. Removal of antibiotics in conventional and advanced wastewater treatment: implications for environmental discharge and wastewater recycling. Water Res 2007;41:4164.

    Article  CAS  Google Scholar 

  3. Abinaya M, Govindan K, Kalpana M, Saravanakumar K, Prabavathi SL, Muthuraj V, Jang A. Reduction of hexavalent chromium and degradation of tetracycline using a novel indium-doped Mn2O3 nanorod photocatalyst. J Hazard Mater 2020;397:122885.

    Article  CAS  Google Scholar 

  4. Gaballah MS, Guo JB, Sun H, Aboagye D, Sobhi M, Muhmood A, Dong RJ. A review targeting veterinary antibiotics removal from livestock manure management systems and future outlook. Bioresour Technol 2021;333:125069.

    Article  CAS  Google Scholar 

  5. Danner M-C, Robertson A, Behrends V, Reiss J. Antibiotic pollution in surface fresh waters: occurrence and effects. Sci Total Environ 2019;664:793.

    Article  CAS  Google Scholar 

  6. Zhang M, He LY, Liu YS, Zhao JL, Zhang JN, Chen J, Zhang QQ, Ying GG. Variation of antibiotic resistome during commercial livestock manure composting. Environ Int 2020;136:105458.

    Article  Google Scholar 

  7. Wang Y, Wang XJ, Li J, Li Y, Xia SQ, Zhao JF, Minale TM, Gu ZL. Coadsorption of tetracycline and copper(II) onto struvite loaded zeolite-An environmentally friendly product recovered from swine biogas slurry. Chem Eng J 2019;371:366.

    Article  CAS  Google Scholar 

  8. Li CX, Xie SY, Wang Y, Pan XF, Yu GW, Zhang YF. Simultaneous heavy metal immobilization and antibiotics removal during synergetic treatment of sewage sludge and pig manure. Environ Sci Pollut Res 2020;27:30323.

    Article  CAS  Google Scholar 

  9. Oberoi AS, Jia YY, Zhang HQ, Khanal SK, Lu H. Insights into the fate and removal of antibiotics in engineered biological treatment systems: a critical review. Environ Sci Technol 2019;53:7234.

    Article  CAS  Google Scholar 

  10. Wang Y, He J, Wu P, Luo D, Yan R, Zhang H, Jiang W. Simultaneous removal of tetracycline and Cu (II) in hybrid wastewater through formic-acid-assisted TiO2 photocatalysis. Ind Eng Chem Res 2020;59:15098.

    Article  CAS  Google Scholar 

  11. Yao N, Li C, Yu JY, Xu QQ, Wei SY, Tian ZQ, Yang Z, Yang WB, Shen J. Insight into adsorption of combined antibiotic-heavy metal contaminants on graphene oxide in water. Sep Purif Technol 2020;236:116278.

    Article  CAS  Google Scholar 

  12. Homem V, Santos L. Degradation and removal methods of antibiotics from aqueous matrices–a review. J Environ Manage 2011;92:2304.

    Article  CAS  Google Scholar 

  13. Zhou J, Ding J, Wan H, Guan GF. Boosting photocatalytic degradation of antibiotic wastewater by synergy effect of heterojunction and phosphorus doping. J Colloid Interface Sci 2021;582:961.

    Article  CAS  Google Scholar 

  14. Qin K, Zhao Q, Yu H, Xia X, Li J, He S, Wei L, An T. A review of bismuth-based photocatalysts for antibiotic degradation: Insight into the photocatalytic degradation performance, pathways and relevant mechanisms. Environ Res 2021;199:111360.

    Article  CAS  Google Scholar 

  15. Jiang LB, Yuan XZ, Zeng GM, Liang J, Wu ZB, Yu HB, Mo D, Wang H, Xiao ZH, Zhou CY. Nitrogen self-doped g-C3N4 nanosheets with tunable band structures for enhanced photocatalytic tetracycline degradation. J Colloid Interface Sci 2019;536:17.

    Article  CAS  Google Scholar 

  16. Wang X, Wang X, Zhao J, Song J, Zhou L, Wang J, Tong X, Chen Y. An alternative to in situ photocatalytic degradation of microcystin-LR by worm-like N, P co-doped TiO2/expanded graphite by carbon layer (NPT-EGC) floating composites. Appl Catal B-Environ 2017;206:479.

    Article  CAS  Google Scholar 

  17. Zhao WF, Duan JL, Ji B, Ma LZ, Yang Z. Novel formation of large area N-TiO2/graphene layered materials and enhanced photocatalytic degradation of antibiotics. J Environ Chem Eng 2020;8:102206.

    Article  CAS  Google Scholar 

  18. Hu X, Hu XJ, Peng QQ, Zhou L, Tan XF, Jiang LH, Tang CF, Wang H, Liu SH, Wang YQ, Ning ZQ. Mechanisms underlying the photocatalytic degradation pathway of ciprofloxacin with heterogeneous TiO2. Chem Eng J 2020;380:122366.

    Article  CAS  Google Scholar 

  19. Karaolia P, Michael-Kordatou I, Hapeshi E, Drosou C, Bertakis Y, Christofilos D, Armatas GS, Sygellou L, Schwartz T, Xekoukoulotakis NP, Fatta-Kassinos D. Removal of antibiotics, antibiotic-resistant bacteria and their associated genes by graphene-based TiO2 composite photocatalysts under solar radiation in urban wastewaters. Appl Catal B-Environ 2018;224:810.

    Article  CAS  Google Scholar 

  20. Jing L, Xu Y, Liu J, Zhou M, Xu H, Xie M, Li H, Xie J. Direct Z-scheme red carbon nitride/rod-like lanthanum vanadate composites with enhanced photodegradation of antibiotic contaminants. Appl Catal B-Environ 2020;277:119245.

    Article  CAS  Google Scholar 

  21. Jin C, Wang M, Li Z, Kang J, Zhao Y, Han J, Wu Z. Two dimensional Co3O4/g-C3N4 Z-scheme heterojunction: Mechanism insight into enhanced peroxymonosulfate-mediated visible light photocatalytic performance. Chem Eng J 2020;398:125569.

    Article  CAS  Google Scholar 

  22. Yan M, Hua YQ, Zhu FF, Gu W, Jiang JH, Shen HQ, Shi WD. Fabrication of nitrogen doped graphene quantum dots-BiOI/MnNb2O6 p-n junction photocatalysts with enhanced visible light efficiency in photocatalytic degradation of antibiotics. Appl Catal B-Environ 2017;202:518.

    Article  CAS  Google Scholar 

  23. Das A, Kumar PM, Bhagavathiachari M, Nair RG. Hierarchical ZnO-TiO2 nanoheterojunction: a strategy driven approach to boost the photocatalytic performance through the synergy of improved surface area and interfacial charge transport. Appl Surf Sci 2020;534:147321.

    Article  CAS  Google Scholar 

  24. Sun CY, Xu QH, Xie Y, Ling Y, Hou Y. Designed synthesis of anatase-TiO2(B) biphase nanowire/ZnO nanoparticle heterojunction for enhanced photocatalysis. J Mater Chem A 2018;6:8289.

    Article  CAS  Google Scholar 

  25. Bhat SSM, Pawar SA, Potphode D, Moon CK, Suh JM, Kim C, Choi S, Patil DS, Kim JJ, Shin JC, Jang HW. Substantially enhanced photoelectrochemical performance of TiO2 nanorods/CdS nanocrystals heterojunction photoanode decorated with MoS2 nanosheets. Appl Catal B-Environ 2019;259:118102.

    Article  CAS  Google Scholar 

  26. Han LP, Li B, Wen H, Guo YX, Lin Z. Photocatalytic degradation of mixed pollutants in aqueous wastewater using mesoporous 2D/2D TiO2(B)-BiOBr heterojunction. J Mater Sci Technol 2021;70:176.

    Article  CAS  Google Scholar 

  27. Li HF, Yu HT, Quan X, Chen S, Zhao HM. Improved photocatalytic performance of heterojunction by controlling the contact facet: high electron transfer capacity between TiO2 and the 110 facet of BiVO4 caused by suitable energy band alignment. Adv Funct Mater 2015;25:3074.

    Article  CAS  Google Scholar 

  28. Iqbal A, Kafizas A, Sotelo-Vazquez C, Wilson R, Ling M, Taylor A, Blackman C, Bevan K, Parkin I, Quesada-Cabrera R. Charge transport phenomena in heterojunction photocatalysts: the WO3/TiO2 system as an archetypical model. ACS Appl Mater Interfaces 2021;13:9781.

    Article  CAS  Google Scholar 

  29. Wang X, Wang X, Ma R, Zhang J, Song J, Wang J, Chen F. Efficient elimination of the pollutants in eutrophicated water with carbon strengthened expanded graphite based photocatalysts: unveiling the synergistic role of metal sites. J Hazard Mater 2021;416:125729.

    Article  CAS  Google Scholar 

  30. Zhong RY, Zhang ZS, Yi HQ, Zeng L, Tang C, Huang LM, Gu M. Covalently bonded 2D/2D O-g-C3N4/TiO2 heterojunction for enhanced visible-light photocatalytic hydrogen evolution. Appl Catal B-Environ 2018;237:1130.

    Article  CAS  Google Scholar 

  31. Yan JQ, Wu H, Chen H, Zhang YX, Zhang FX, Liu SF. Fabrication of TiO2/C3N4 heterostructure for enhanced photocatalytic Z-scheme overall water splitting. Appl Catal B-Environ 2016;191:130.

    Article  CAS  Google Scholar 

  32. Zhou L, Wang LZ, Zhang JL, Lei JY, Liu YD. The preparation, and applications of g-C3N4/TiO2 heterojunction catalysts-a review. Res Chem Intermed 2017;43:2081.

    Article  CAS  Google Scholar 

  33. Wang W, Fang JJ, Shao SF, Lai M, Lu CH. Compact and uniform TiO2@g-C3N4 core-shell quantum heterojunction for photocatalytic degradation of tetracycline antibiotics. Appl Catal B-Environ 2017;217:57.

    Article  CAS  Google Scholar 

  34. Hao RR, Wang GH, Tang H, Sun LL, Xu C, Han DY. Template-free preparation of macro/mesoporous g-C3N4/TiO2 heterojunction photocatalysts with enhanced visible light photocatalytic activity. Appl Catal B-Environ 2016;187:47.

    Article  CAS  Google Scholar 

  35. Li G, Nie X, Chen J, Jiang Q, An T, Wong PK, Zhang H, Zhao H, Yamashita H. Enhanced visible-light-driven photocatalytic inactivation of Escherichia coli using g-C3N4/TiO2 hybrid photocatalyst synthesized using a hydrothermal-calcination approach. Water Res 2015;86:17.

    Article  CAS  Google Scholar 

  36. Li Y, Wang J, Yang Y, Zhang Y, He D, An Q, Cao G. Seed-induced growing various TiO2 nanostructures on g-C3N4 nanosheets with much enhanced photocatalytic activity under visible light. J Hazard Mater 2015;292:79.

    Article  CAS  Google Scholar 

  37. Wang A, Zheng Z, Wang H, Chen Y, Luo C, Liang D, Hu B, Qiu R, Yan K. 3D hierarchical H2-reduced Mn-doped CeO2 microflowers assembled from nanotubes as a high-performance Fenton-like photocatalyst for tetracycline antibiotics degradation. Appl Catal B-Environ 2020;277:119171.

    Article  CAS  Google Scholar 

  38. He S, Yan C, Chen X-Z, Wang Z, Ouyang T, Guo M-L, Liu Z-Q. Construction of core-shell heterojunction regulating α-Fe2O3 layer on CeO2 nanotube arrays enables highly efficient Z-scheme photoelectrocatalysis. Appl Catal B-Environ 2020;276:119138.

    Article  CAS  Google Scholar 

  39. Li ZX, Ge K, Yang K, Wang S, Li XH, He JH, Fu CC, Ye J, Zhang Y, Yang YF. Z-scheme 3D g-C3N4/TiO2-x heterojunctions with high photocatalytic efficiency. ChemistrySelect 2020;5:11159.

    Article  CAS  Google Scholar 

  40. Wang J, Wang GH, Wang X, Wu Y, Su YR, Tang H. 3D/2D direct Z-scheme heterojunctions of hierarchical TiO2 microflowers/g-C3N4 nanosheets with enhanced charge carrier separation for photocatalytic H2 evolution. Carbon 2019;149:618.

    Article  CAS  Google Scholar 

  41. Sheng YQ, Wei Z, Miao H, Yao WQ, Li HQ, Zhu YF. Enhanced organic pollutant photodegradation via adsorption/photocatalysis synergy using a 3D g-C3N4/TiO2 free-separation photocatalyst. Chem Eng J 2019;370:287.

    Article  CAS  Google Scholar 

  42. Nasir MS, Yang GR, Ayub I, Wang SL, Yan W. Tin diselinide a stable co-catalyst coupled with branched TiO2 fiber and g-C3N4 quantum dots for photocatalytic hydrogen evolution. Appl Catal B-Environ 2020;270:118900.

    Article  CAS  Google Scholar 

  43. Jo WK, Natarajan TS. Influence of TiO2 morphology on the photocatalytic efficiency of direct Z-scheme g-C3N4/TiO2 photocatalysts for isoniazid degradation. Chem Eng J 2015;281:549.

    Article  CAS  Google Scholar 

  44. Hao J, Zhuang Z, Cao K, Gao G, Wang C, Lai F, Lu S, Ma P, Dong W, Liu T. Unraveling the electronegativity-dominated intermediate adsorption on high-entropy alloy electrocatalysts. Nat Commun 2022;13:1.

    Article  Google Scholar 

  45. Zhu H, Zhu Z, Hao J, Sun S, Lu S, Wang C, Ma P, Dong W, Du M. High-entropy alloy stabilized active Ir for highly efficient acidic oxygen evolution. Chem Eng J 2022;431:133251.

    Article  CAS  Google Scholar 

  46. Zhu H, Gao G, Du M, Zhou J, Wang K, Wu W, Chen X, Li Y, Ma P, Dong W. Atomic-scale core/shell structure engineering induces precise tensile strain to boost hydrogen evolution catalysis. Adv Mater 2018;30:1707301.

    Article  Google Scholar 

  47. Zhu H, Gu L, Yu D, Sun Y, Wan M, Zhang M, Wang L, Wang L, Wu W, Yao J. The marriage and integration of nanostructures with different dimensions for synergistic electrocatalysis. Energ Environ Sci 2017;10:321.

    Article  CAS  Google Scholar 

  48. Zheng S, Chen H, Tong X, Wang Z, Crittenden JC, Huang M. Integration of a photo-fenton reaction and a membrane filtration using CS/PAN@ FeOOH/g-C3N4 electrospun nanofibers: synthesis, characterization, self-cleaning performance and mechanism. Appl Catal B-Environ 2021;281:119519.

    Article  CAS  Google Scholar 

  49. Duoerkun G, Zhang Y, Shi Z, Shen X, Cao W, Liu T, Liu J, Chen Q, Zhang L. Construction of n-TiO2/p-Ag2O junction on carbon fiber cloth with Vis–NIR photoresponse as a filter-membrane-shaped photocatalyst. Adv Fiber Mater 2020;2:13.

    Article  CAS  Google Scholar 

  50. Zhu Z, Hao J, Zhu H, Sun S, Duan F, Lu S, Du M. In situ fabrication of electrospun carbon nanofibers–binary metal sulfides as freestanding electrode for electrocatalytic water splitting. Adv Fiber Mater 2021;3:117.

    Article  CAS  Google Scholar 

  51. Lin H, Sun W, Yu Y, Ding Y, Yang Y, Zhang Z, Ma J. Simultaneous reductions in antibiotics and heavy metal pollution during manure composting. Sci Total Environ 2021;788:147830.

    Article  CAS  Google Scholar 

  52. Fu F, Wang Q. Removal of heavy metal ions from wastewaters: a review. J Environ Manage 2011;92:407.

    Article  CAS  Google Scholar 

  53. Shi W, Shu K, Sun H, Ren H, Li M, Chen F, Guo F. Dual enhancement of capturing photogenerated electrons by loading CoP nanoparticles on N-deficient graphitic carbon nitride for efficient photocatalytic degradation of tetracycline under visible light. Sep Purif Technol 2020;246:116930.

    Article  CAS  Google Scholar 

  54. Wang X, Wang J, Wei B, Zhang N, Xu J, Miao H, Liu L, Su C, Li Y, Wang Z. Plasma tailoring in WTe2 nanosheets for efficiently boosting hydrogen evolution reaction. J Mater Sci Technol 2021;78:170.

    Article  CAS  Google Scholar 

  55. Xu W, Lai S, Pillai SC, Chu W, Hu Y, Jiang X, Fu M, Wu X, Li F, Wang H. Visible light photocatalytic degradation of tetracycline with porous Ag/graphite carbon nitride plasmonic composite: degradation pathways and mechanism. J Colloid Interf Sci 2020;574:110.

    Article  CAS  Google Scholar 

  56. Li L, Qin Z, Ries L, Hong S, Michel T, Yang J, Salameh C, Bechelany M, Miele P, Kaplan D. Role of sulfur vacancies and undercoordinated Mo regions in MoS2 nanosheets toward the evolution of hydrogen. ACS Nano 2019;13:6824.

    Article  CAS  Google Scholar 

  57. Di J, Xia JX, Chisholm MF, Zhong J, Chen C, Cao XZ, Dong F, Chi Z, Chen HL, Weng YX, Xiong J, Yang SZ, Li HM, Liu Z, Dai S. Defect-tailoring mediated electron-hole separation in single-unit-cell Bi3O4Br nanosheets for boosting photocatalytic hydrogen evolution and nitrogen fixation. Adv Mater 2019;31:1807576.

    Article  Google Scholar 

  58. Zhou W, Fu HG. Defect-mediated electron-hole separation in semiconductor photocatalysis. Inorg Chem Front 2018;5:1240.

    Article  CAS  Google Scholar 

  59. Bai S, Zhang N, Gao C, Xiong Y. Defect engineering in photocatalytic materials. Nano Energy 2018;53:296.

    Article  CAS  Google Scholar 

  60. Lau VWh, Yu VWz, Ehrat F, Botari T, Moudrakovski I, Simon T, Duppel V, Medina E, Stolarczyk JK, Feldmann J. Urea‐modified carbon nitrides: Enhancing photocatalytic hydrogen evolution by rational defect engineering. Adv. Energy Mater. 2017, 7, 1602251.

  61. Huang HW, Zhou C, Jiao XC, Yuan HF, Zhao JW, He CQ, Hofkens J, Roeffaers MBJ, Long JL, Steele JA. Subsurface defect engineering in single-unit-cell Bi2WO6 monolayers boosts solar-driven photocatalytic performance. ACS Catal 2020;10:1439.

    Article  CAS  Google Scholar 

  62. Chao Y, Zhang J, Li H, Wu P, Li X, Chang H, He J, Wu H, Li H, Zhu W. Synthesis of boron nitride nanosheets with N-defects for efficient tetracycline antibiotics adsorptive removal. Chem Eng J 2020;387:124138.

    Article  CAS  Google Scholar 

  63. Kresse G, Hafner J. Ab initio molecular dynamics for liquid metals. Phys Rev B 1993;47:558.

    Article  CAS  Google Scholar 

  64. Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett 1996;77:3865.

    Article  CAS  Google Scholar 

  65. Blochl PE. Projector augmented-wave method. Phys Rev B 1994;50:17953.

    Article  CAS  Google Scholar 

  66. Dudarev SL, Botton GA, Savrasov SY, Humphreys CJ, Sutton AP. Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study. Phys Rev B 1998;57:1505.

    Article  CAS  Google Scholar 

  67. Wang X, Wang X, Zhao J, Chen J, Zhang J, Song J, Huang J. Bioframe synthesis of NF–TiO2/straw charcoal composites for enhanced adsorption-visible light photocatalytic degradation of RhB. RSC Adv 2015;5:66611.

    Article  CAS  Google Scholar 

  68. Zhang Y, Xu J, Mei J, Sarina S, Wu Z, Liao T, Yan C, Sun Z. Strongly interfacial-coupled 2D–2D TiO2/g-C3N4 heterostructure for enhanced visible-light induced synthesis and conversion. J Hazard Mater 2020;394:122529.

    Article  CAS  Google Scholar 

  69. Li Z, Wang X, Xu N, Xiao Y, Ma L, Duan J. Cost-effective and visible-light-driven melamine-derived sponge for tetracyclines degradation and Salmonella inactivation in water. Chem Eng J 2020;394:124913.

    Article  CAS  Google Scholar 

  70. Louangsouphom B, Wang X, Song J, Wang X. Low-temperature preparation of a N-TiO2/macroporous resin photocatalyst to degrade organic pollutants. Environ Chem Lett 2019;17:1061.

    Article  CAS  Google Scholar 

  71. Wang X, Wang X, Zhao J, Song J, Su C, Wang Z. Surface modified TiO2 floating photocatalyst with PDDA for efficient adsorption and photocatalytic inactivation of Microcystis aeruginosa. Water Res 2018;131:320.

    Article  CAS  Google Scholar 

  72. Wang X, Wang X, Song J, Li Y, Wang Z, Gao Y. A highly efficient TiOX (X = N and P) photocatalyst for inactivation of Microcystis aeruginosa under visible light irradiation. Sep Purif Technol 2019;222:99.

    Article  CAS  Google Scholar 

  73. Wang X, Song J, Zhao J, Wang Z, Wang X. In-situ active formation of carbides coated with NP-TiO2 nanoparticles for efficient adsorption-photocatalytic inactivation of harmful algae in eutrophic water. Chemosphere 2019;228:351.

    Article  CAS  Google Scholar 

  74. Wang X, Wang X, Zhao J, Song J, Su C, Wang Z. Adsorption-photocatalysis functional expanded graphite C/C composite for in-situ photocatalytic inactivation of Microcystis aeruginosa. Chem Eng J 2018;341:516.

    Article  CAS  Google Scholar 

  75. He F, Zhu B, Cheng B, Yu J, Ho W, Macyk W. 2D/2D/0D TiO2/C3N4/Ti3C2 MXene composite S-scheme photocatalyst with enhanced CO2 reduction activity. Appl Catal B-Environ 2020;272:119006.

    Article  CAS  Google Scholar 

  76. Jing L, Wang D, Xu Y, Xie M, Yan J, He M, Song Z, Xu H, Li H. Porous defective carbon nitride obtained by a universal method for photocatalytic hydrogen production from water splitting. J Colloid Interf Sci 2020;566:171.

    Article  CAS  Google Scholar 

  77. Wang X, Wang X, Zhao J, Song J, Wang J, Ma R, Ma J. Solar light-driven photocatalytic destruction of cyanobacteria by F-Ce-TiO2/expanded perlite floating composites. Chem Eng J 2017;320:253.

    Article  CAS  Google Scholar 

  78. Huang X, Zhu N, Mao F, Ding Y, Zhang S, Liu H, Li F, Wu P, Dang Z, Ke Y. Enhanced heterogeneous photo-Fenton catalytic degradation of tetracycline over yCeO2/Fh composites: Performance, degradation pathways, Fe2+ regeneration and mechanism. Chem Eng J 2020;392:123636.

    Article  CAS  Google Scholar 

  79. Ao X, Sun W, Li S, Yang C, Li C, Lu Z. Degradation of tetracycline by medium pressure UV-activated peroxymonosulfate process: Influencing factors, degradation pathways, and toxicity evaluation. Chem Eng J 2019;361:1053.

    Article  CAS  Google Scholar 

  80. Hu Z, Wu Z, Han C, He J, Ni Z, Chen W. Two-dimensional transition metal dichalcogenides: interface and defect engineering. Chem Soc Rev 2018;47:3100.

    Article  CAS  Google Scholar 

  81. Li H, Tan Y, Liu P, Guo C, Luo M, Han J, Lin T, Huang F, Chen M. Atomic-sized pores enhanced electrocatalysis of TaS2 nanosheets for hydrogen evolution. Adv Mater 2016;28:8945.

    Article  CAS  Google Scholar 

  82. Pierik AJ, Hulstein M, Hagen WR, Albracht SP. A low-spin iron with CN and CO as intrinsic ligands forms the core of the active site in [Fe]-hydrogenases. Eur J Biochem 1998;258:572.

    Article  CAS  Google Scholar 

  83. Mansour A. Copper Mg K α XPS spectra from the physical electronics model 5400 spectrometer. Surf Sci Spectra 1994;3:202.

    Article  CAS  Google Scholar 

  84. Capece F, Di Castro V, Furlani C, Mattogno G, Fragale C, Gargano M, Rossi M. “Copper chromite” catalysts: XPS structure elucidation and correlation with catalytic activity. J Electron Spectrosc Relat Phenom 1982;27:119.

    Article  CAS  Google Scholar 

  85. Parmigiani F, Pacchioni G, Illas F, Bagus P. Studies of the Cu-O bond in cupric oxide by X-ray photoelectron spectroscopy and ab initio electronic structure models. J Electron Spectrosc Relat Phenom 1992;59:255.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the support of this research by the National Natural Science Foundation of China (Grant nos. 51909165, 42177438), China Postdoctoral Science Foundation (2020TQ0109, 2020M682753). Science and Technology Program of Guangzhou (2019050001), and National Key Research and Development Program of China (2019YFE0198000). F. Chen acknowledges the Pearl River Talent Program (2019QN01L951). The authors would like to thank Shiyanjia Lab (http://www.shiyanjia.com) for the language editing service.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xin Wang, Jun Wang or Fuming Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1304 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Wang, X., Shen, K. et al. Defect Engineering in g-C3N4 Quantum-Dot-Modified TiO2 Nanofiber: Uncovering Novel Mechanisms for the Degradation of Tetracycline in Coexistence with Cu2+. Adv. Fiber Mater. 5, 168–182 (2023). https://doi.org/10.1007/s42765-022-00205-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42765-022-00205-z

Keywords

Navigation