Skip to main content
Log in

Asymmetric Janus Fibers with Bistable Thermochromic and Efficient Solar–Thermal Properties for Personal Thermal Management

  • Research Article
  • Published:
Advanced Fiber Materials Aims and scope Submit manuscript

Abstract

The compelling combination of thermochromism and multifunctional wearable heaters in smart textiles has received increasing attention given the significant synergistic effect of green solar heat supply and energy storage. However, due to color incompatibility and poor knittability, developing fabrics with bistable thermochromic properties to achieve efficient solar–thermal management remains a challenging endeavor. Here, by combining bistable thermochromic, photochromic, and efficient solar–thermal properties, we constructed an asymmetric Janus (Janus A/B) fiber (BTCSJF) that can simultaneously display two colors and help with energy reserve while harvesting solar power. Benefiting greatly from donor–acceptor electron transfer, dynamic hydrogen bonding, and supercooling properties, BTCSJF displays a quick switch in color, excellent bistability, and enhanced performance in storing phase-change energy. In addition, BTCSJF can be self-heated by 35.6 °C higher than conventional fibers because it can capture and store solar energy. This research outlines a method to fabricate braided fibers with two theoretically incompatible properties that have promising implications for self-powered integrated bistable color-changing and personal thermal management applications.

Graphical Abstract

An asymmetric Janus light absorbent/bistable thermochromic fiber (BTCSJF) was designed and fabricated, which can combine solar energy, phase-change energy storage, and bistable thermo- and photochromic properties. The unique Janus structure allows it to be used as a portable heater to stimulate color changes without obscuring color due to dark photothermal materials. Meanwhile, the heat energy converted by solar energy can be stored for personal thermal management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Data is available when required.

References

  1. Xu G, Xia H, Chen PY, She W, Zhang HN, Ma J, Ruan QS, Zhang W, Sun ZM. Thermochromic hydrogels with dynamic solar modulation and regulatable critical response temperature for energy-saving smart windows. Adv Funct Mater. 2022;32:2109597.

    Article  CAS  Google Scholar 

  2. Zhang QH, Jiang YW, Chen LT, Chen W, Li JX, Cai YF, Ma CQ, Xu WH, Lu YQ, Jia XD, Bao ZN. Ultra-Compliant and tough thermochromic polymer for self-regulated smart windows. Adv Funct Mater. 2021;31:2100686.

    Article  CAS  Google Scholar 

  3. Wang S, Xu ZQ, Wang TT, Xiao TX, Hu XY, Shen YZ, Wang LY. Warm/cool-tone switchable thermochromic material for smart windows by orthogonally integrating properties of pillar[6]arene and ferrocene. Nat Commun. 2018;9:1737.

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  4. Ding HY, Liang XX, Wang Q, Wang MM, Li ZJ, Sun GX. A semi-interpenetrating network ionic composite hydrogel with low modulus, fast self-recoverability and high conductivity as flexible sensor. Carbohyd Polym. 2020;248: 116797.

    Article  CAS  Google Scholar 

  5. Zhang KQ, Shi YL, Wu L, Chen L, Wei TT, Jia X, Chen Z, Li MQ, Xu YS, Wang Y, Gao YF, Guo XH. Thermo- and pH-responsive starch derivatives for smart window. Carbohyd Polym. 2018;196:209.

    Article  CAS  Google Scholar 

  6. Shi HH, Wu SS, Si MQ, Wei SX, Lin GQ, Liu H, Xie WP, Lu W, Chen T. Cephalopod-inspired design of photomechanically modulated display systems for on-demand fluorescent patterning. Adv Mater. 2022;34:2107452.

    Article  CAS  Google Scholar 

  7. Kim J, Shim HJ, Yang J, Choi MK, Kim DC, Kim J, Hyeon T, Kim DH. Ultrathin Quantum dot display integrated with wearable electronics. Adv Mater. 2017;29:1700217.

    Article  Google Scholar 

  8. Shi QW, Sun JQ, Hou CY, Li YG, Zhang QH, Wang HZ. Advanced functional fiber and smart textile. Adv Fiber Mater. 2019;1:3.

    Article  Google Scholar 

  9. Liu XH, Miao JL, Fan Q, Zhang WX, Zuo XW, Tian MW, Zhu SF, Zhang XJ, Qu LJ. Recent progress on smart fiber and textile based wearable strain sensors: materials, fabrications and applications. Adv Fiber Mater. 2022;4:361.

    Article  CAS  Google Scholar 

  10. Ma WJ, Zhang Y, Pan SW, Cheng YH, Shao ZY, Xiang HX, Chen GY, Zhu LP, Weng W, Bai H, Zhu MF. Smart fibers for energy conversion and storage. Chem Soc Rev. 2021;50:7009.

    Article  CAS  PubMed  Google Scholar 

  11. Shi JD, Liu S, Zhang LS, Yang B, Shu L, Yang Y, Ren M, Wang Y, Chen JW, Chen W, Choi Y, Tao XM. Smart textile-integrated microelectronic systems for wearable applications. Adv Mater. 2020;32:1901958.

    Article  CAS  Google Scholar 

  12. Chen GR, Li YZ, Bick M, Chen J. Smart textiles for electricity generation. Chem Rev. 2020;120:3668.

    Article  CAS  PubMed  Google Scholar 

  13. Fang YS, Chen GR, Bick M, Chen J. Smart textiles for personalized thermoregulation. Chem Soc Rev. 2021;50:9357.

    Article  CAS  PubMed  Google Scholar 

  14. Hu R, Liu YD, Shin SM, Huang SY, Ren XC, Shu WC, Cheng JJ, Tao GM, Xu WL, Chen RK, Luo XB. Emerging materials and strategies for personal thermal management. Adv Energy Mater. 2020;10:1903921.

    Article  CAS  Google Scholar 

  15. Libanori A, Chen GR, Zhao X, Zhou YH, Chen J. Smart textiles for personalized healthcare. Nat Electron. 2022;5:142.

    Article  CAS  Google Scholar 

  16. Yang W, Feng Y, Si Q, Yan Q, Long P, Dong L, Fu L, Feng W. Efficient cycling utilization of solar-thermal energy for thermochromic displays with controllable heat output. J Mater Chem A. 2019;7:97.

    Article  CAS  Google Scholar 

  17. Mazza MMA, Cardano F, Cusido J, Baker JD, Giordani S, Raymo FM. Ratiometric temperature sensing with fluorescent thermochromic switches. Chem Commun. 2019;55:1112.

    Article  CAS  Google Scholar 

  18. Li BX, Luo Z, Yang WG, Sun H, Ding Y, Yu ZZ, Yang DZ. Adaptive and adjustable mxene/reduced graphene oxide hybrid aerogel composites integrated with phase-change material and thermochromic coating for synchronous visible/infrared camouflages. ACS Nano. 2023;17:6875.

    Article  CAS  PubMed  Google Scholar 

  19. Kim H, Choi J, Kim KK, Won P, Hong S, Ko SH. Biomimetic chameleon soft robot with artificial crypsis and disruptive coloration skin. Nat Commun. 2021;12:4658.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  20. Zhong YD, Tang W, Zhang C, Jiao ZD, Wu DM, Liu WT, Yang HY, Zou J. Programmable thermochromic soft actuators with “two dimensional” bilayer architectures for soft robotics. Nano Energy. 2022;102: 107741.

    Article  CAS  Google Scholar 

  21. Wu TH, Yin TH, Hu XC, Nian GD, Qu SX, Yang W. A thermochromic hydrogel for camouflage and soft display. Adv Opt Mater. 2020;8:2000031.

    Article  CAS  Google Scholar 

  22. Li Y, Teixeira Y, Parlato G, Grace J, Wang F, Huey BD, Wang XJ. Three-dimensional thermochromic liquid crystal elastomer structures with reversible shape-morphing and color-changing capabilities for soft robotics. Soft Matter. 2022;18:6857.

    Article  CAS  PubMed  ADS  Google Scholar 

  23. Li JS, Li JJ, Li HB, Wang CC, Sheng MF, Zhang LP, Fu SH. Bistable elastic electrochromic ionic gels for energy-saving displays. ACS Appl Mater Interfaces. 2021;13:27200.

    Article  CAS  PubMed  Google Scholar 

  24. Zhang W, Li HZ, Elezzabi AY. Electrochromic displays having two-dimensional cie color space tunability. Adv Funct Mater. 2022;32:2108341.

    Article  CAS  Google Scholar 

  25. Zhang W, Li HZ, Yu WW, Elezzabi AY. Emerging Zn anode-based electrochromic devices. Small Sci. 2021;1:2100040.

    Article  CAS  Google Scholar 

  26. Wang C, Wang J, Zhang L, Fu S. Solar-driven bistable thermochromic textiles based on supercooling and space constraint anchoring electron transfer. J Mater Chem A. 2023;11:10798.

    Article  CAS  Google Scholar 

  27. Hernandez TS, Barile CJ, Strand MT, Dayrit TE, Slotcayage DJ, McGehee MD. Bistable black electrochromic windows based on the reversible metal electrodeposition of Bi and Cu. ACS Energy Lett. 2018;3:104.

    Article  CAS  Google Scholar 

  28. Wang CC, Li JS, Lin WH, Wang JW, Chen YH, Li BZ, Zhang LP, Fu SH. Bistable electrochromic dual-output array display based on intramolecular proton coupled electron transfer. Chem Eng J. 2023;451: 138357.

    Article  CAS  Google Scholar 

  29. Wang YY, Wang S, Wang XJ, Zhang WR, Zheng WX, Zhang YM, Zhang SXA. A multicolour bistable electronic shelf label based on intramolecular proton-coupled electron transfer. Nat Mater. 2019;18:1335.

    Article  CAS  PubMed  ADS  Google Scholar 

  30. Yin Y, Zhu HY, Wu T, Liao PK, Lan CY, Li C. Bistable silver electrodeposition-based electrochromic device with reversible three-state optical transformation by using WO3 nanoislands modified ITO electrode. Adv Mater Interfaces. 2022;9:2102566.

    Article  CAS  Google Scholar 

  31. Rathod PV, Puguan JMC, Kim H. Self-bleaching dual responsive poly(ionic liquid) with optical bistability toward climate-adaptable solar modulation. Chem Eng J. 2021;422: 130065.

    Article  CAS  Google Scholar 

  32. Tao X, Liu DQ, Liu TW, Meng Z, Yu JS, Cheng HF. A bistable variable infrared emissivity device based on reversible silver electrodeposition. Adv Funct Mater. 2022;32:2202661.

    Article  CAS  Google Scholar 

  33. Wang H, Zhang Y, Liang X, Zhang Y. Smart fibers and textiles for personal health management. ACS Nano. 2021;15:12497.

    Article  CAS  PubMed  Google Scholar 

  34. Wu J, Wang M, Dong L, Shi J, Ohyama M, Kohsaka Y, Zhu C, Morikawa H. A trimode thermoregulatory flexible fibrous membrane designed with hierarchical core-sheath fiber structure for wearable personal thermal management. ACS Nano. 2022;16:12801.

    Article  CAS  PubMed  Google Scholar 

  35. Zhou TZ, Yu YZ, He B, Wang Z, Xiong T, Wang ZX, Liu YT, Xin JW, Qi M, Zhang HZ, Zhou XH, Gao LH, Cheng QF, Wei L. Ultra-compact MXene fibers by continuous and controllable synergy of interfacial interactions and thermal drawing-induced stresses. Nat Commun. 2022;13:4564.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  36. Shi JM, Qin ML, Aftab W, Zou RQ. Flexible phase change materials for thermal energy storage. Energy Storage Mater. 2021;41:321.

    Article  Google Scholar 

  37. Wu MQ, Wu S, Cai YF, Wang RZ, Li TX. Form-stable phase change composites: Preparation, performance, and applications for thermal energy conversion, storage and management. Energy Storage Mater. 2021;42:380.

    Article  Google Scholar 

  38. Kou Y, Sun KY, Luo JP, Zhou F, Huang HB, Wu ZS, Shi Q. An intrinsically flexible phase change film for wearable thermal managements. Energy Storage Mater. 2021;34:508.

    Article  Google Scholar 

  39. Fei L, Yin YJ, Yang MF, Zhang SF, Wang CX. Wearable solar energy management based on visible solar thermal energy storage for full solar spectrum utilization. Energy Storage Mater. 2021;42:636.

    Article  Google Scholar 

  40. Si Y, Shi S, Dong Z, Wu H, Sun F, Yang J, Hu J. Bioinspired stable single-layer janus fabric with directional water/moisture transport property for integrated personal cooling management. Adv Fiber Mater. 2023;5:138.

    Article  Google Scholar 

  41. Fu K, Yang Z, Pei Y, Wang Y, Xu B, Wang Y, Yang B, Hu L. Designing textile architectures for high energy-efficiency human body sweat- and cooling-management. Adv Fiber Mater. 2019;1:61.

    Article  Google Scholar 

  42. Yue X, Zhang T, Yang D, Qiu F, Wei G, Zhou H. Multifunctional Janus fibrous hybrid membranes with sandwich structure for on-demand personal thermal management. Nano Energy. 2019;63: 103808.

    Article  CAS  Google Scholar 

  43. Dai B, Li X, Xu T, Zhang X. Radiative cooling and solar heating janus films for personal thermal management. ACS Appl Mater Interfaces. 2022;14:18877.

    Article  CAS  PubMed  Google Scholar 

  44. Wu J, Zhang M, Su M, Zhang Y, Liang J, Zeng S, Chen B, Cui L, Hou C, Tao G. Robust and flexible multimaterial aerogel fabric toward outdoor passive heating. Adv Fiber Mater. 2022;4:1545.

    Article  CAS  Google Scholar 

  45. Lei L, Wang D, Shi S, Yang J, Su J, Wang C, Si Y, Hu J. Toward low-emissivity passive heating: a supramolecular-enhanced membrane with warmth retention. Materials Horizons. 2023.

  46. Lei L, Shi S, Wang D, Meng S, Dai J-G, Fu S, Hu J. Recent advances in thermoregulatory clothing: materials, mechanisms, and perspectives. ACS Nano. 1803;2023:17.

    Google Scholar 

  47. Shi M, Shen M, Guo X, Jin X, Cao Y, Yang Y, Wang W, Wang J. Ti3C2Tx MXene-decorated nanoporous polyethylene textile for passive and active personal precision heating. ACS Nano. 2021;15:11396.

    Article  CAS  PubMed  Google Scholar 

  48. Fei L, Zhang Z-Y, Tan Y, Ye T, Dong D, Yin Y, Li T, Wang C. Efficient and robust molecular solar thermal fabric for personal thermal management. Adv Mater. 2023;35:2209768.

    Article  CAS  Google Scholar 

  49. Li K, Li M, Lin C, Liu G, Li Y, Huang B. A Janus textile capable of radiative subambient cooling and warming for multi-scenario personal thermal management. Small. 2023;19:2206149.

    Article  CAS  Google Scholar 

  50. Luo H, Li Q, Du K, Xu Z, Zhu H, Liu D, Cai L, Ghosh P, Qiu M. An ultra-thin colored textile with simultaneous solar and passive heating abilities. Nano Energy. 2019;65: 103998.

    Article  Google Scholar 

  51. Guo Y, Dun C, Xu J, Mu J, Li P, Gu L, Hou C, Hewitt CA, Zhang Q, Li Y, Carroll DL, Wang H. Ultrathin, washable, and large-area graphene papers for personal thermal management. Small. 2017;13:1702645.

    Article  Google Scholar 

  52. Sun KY, Dong HS, Kou Y, Yang HN, Liu HQ, Li YG, Shi Q. Flexible graphene aerogel-based phase change film for solar-thermal energy conversion and storage in personal thermal management applications. Chem Eng J. 2021;419: 129637.

    Article  CAS  Google Scholar 

  53. Li GX, Dong T, Zhu LL, Cui TT, Chen S. Microfluidic-Blow-Spinning fabricated sandwiched structural fabrics for All-Season personal thermal management. Chem Eng J. 2023;453: 139763.

    Article  CAS  Google Scholar 

  54. Ge FQ, Fei L, Zhang JJ, Wang CX. The electrical-triggered high contrast and reversible color-changing janus fabric based on double side coating. ACS Appl Mater Interfaces. 2020;12:21854.

    Article  CAS  PubMed  Google Scholar 

  55. Fei L, Yu WD, Tan JL, Yin YJ, Wang CX. High solar energy absorption and human body radiation reflection janus textile for personal thermal management. Adv Fiber Mater. 2023;5:955.

    Article  Google Scholar 

  56. Mao Y, Wang D, Hu J, Fu S. Mechanically flexible and flame retardant polyphenol-bridged casein/MXene composite for fire proofing repeatable contact/non-contact fire monitoring. Chem Eng J. 2023;454: 140161.

    Article  CAS  Google Scholar 

  57. Mao YY, Wang D, Fu SH. Layer-by-layer self-assembled nanocoatings of Mxene and P, N-co-doped cellulose nanocrystals onto cotton fabrics for significantly reducing fire hazards and shielding electromagnetic interference. Composites Part A-Appl Sci Manuf. 2022;153: 106751.

    Article  CAS  Google Scholar 

  58. Liu XY, Jin XX, Li L, Wang JF, Yang YY, Cao YX, Wang WJ. Air-permeable, multifunctional, dual-energy-driven MXene-decorated polymeric textile-based wearable heaters with exceptional electrothermal and photothermal conversion performance. J Mater Chem A. 2020;8:12526.

    Article  CAS  Google Scholar 

  59. Zhang X, Wang K, Hu J, Zhang Y, Dai Y, Xia F. Role of a high calcium ion content in extending the properties of alginate dual-crosslinked hydrogels. J Mater Chem A. 2020;8:25390.

    Article  CAS  Google Scholar 

  60. Ji D, Park JM, Oh MS, Nguyen TL, Shin H, Kim JS, Kim D, Park HS, Kim J. Superstrong, superstiff, and conductive alginate hydrogels. Nat Commun. 2022;13:3019.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  61. Zha X-H, Zhou J, Zhou Y, Huang Q, He J, Francisco JS, Luo K, Du S. Promising electron mobility and high thermal conductivity in Sc2CT2 (T = F, OH) MXenes. Nanoscale. 2016;8:6110.

    Article  CAS  PubMed  ADS  Google Scholar 

  62. Jin X, Wang J, Dai L, Liu X, Li L, Yang Y, Cao Y, Wang W, Wu H, Guo S. Flame-retardant poly(vinyl alcohol)/MXene multilayered films with outstanding electromagnetic interference shielding and thermal conductive performances. Chem Eng J. 2020;380: 122475.

    Article  CAS  Google Scholar 

  63. Basnec K, Perse LS, Sumiga B, Huskic M, Meden A, Hladnik A, Podgornik BB, Gunde MK. Relation between colour- and phase changes of a leuco dye-based thermochromic composite. Sci Rep. 2018;8:5511.

    Article  PubMed  PubMed Central  ADS  Google Scholar 

Download references

Acknowledgements

This study was supported by the Natural Science Foundation of Jiangsu Province (No. BK20211240), and the International Joint Research Laboratory for Eco-Textile Technology (IJRLETT) at Jiangnan University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Liping Zhang or Shaohai Fu.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Shi, J., Zhang, L. et al. Asymmetric Janus Fibers with Bistable Thermochromic and Efficient Solar–Thermal Properties for Personal Thermal Management. Adv. Fiber Mater. 6, 264–277 (2024). https://doi.org/10.1007/s42765-023-00346-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42765-023-00346-9

Keywords

Navigation