Skip to main content
Log in

An investigation for the performance of meta-aramid fiber blends treated in supercritical carbon dioxide fluid

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

The physicochemical performance of meta-aramid fiber blends treated in supercritical carbon dioxide fluid was studied at different temperatures. The effects of treatment temperatures on the surface morphology, wettability, chemical and crystal structures, thermal and antistatic properties were investigated by employing Scanning electron microscopy, Dynamic wetting measurements, Fourier transform infrared spectrometry, X-ray diffraction, Thermal analysis and Static half period method, respectively. The result showed that the surface of the treated meta-aramid fiber blends was changed with the treatment temperature increasing and more mild grooves and stripes appeared. The dynamic wetting measurements showed that the water contact angles and absorption time for treated fibers were decreased with temperature increasing. The slight shifts of the characteristic bands of the treated meta-aramid fiber blends were observed in FT-IR spectra with the system temperature increasing. Meanwhile, XRD analysis showed that the diffraction intensities of treated samples were improved in the supercritical carbon dioxide fluid because some re-arrangements and re-crystallizations of the molecule chains generated. TG-DTG analysis indicated that the thermal property of meta-aramid fiber blends could be improved at various temperatures. In addition, supercritical carbon dioxide fluid had little negative influence on the physical and antistatic properties of the meta-aramid fiber blends.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. K. Fink, “High Performance Polymer”, pp.423–448, William Andrew Inc., Norwich, 2008.

    Book  Google Scholar 

  2. E. M. Kim and J. Jang, Fiber. Polym., 11, 677 (2010).

    Article  CAS  Google Scholar 

  3. B. Serge and F. Xavier, Fire Mater., 26, 155 (2002).

    Article  Google Scholar 

  4. P. J. D. Lange, E. Mäder, K. Mai, R. J. Young, and I. Ahmad, Compos. Pt. A-Appl. Sci. Manuf., 32, 331 (2001).

    Article  Google Scholar 

  5. C. Jia, P. Chen, W. Liu, B. Li, and Q. Wang, Appl. Surf. Sci., 257, 4165 (2011).

    Article  CAS  Google Scholar 

  6. R. J. Day, K. D. Hewson, and P. A. Lovell, Compos. Sci. Technol., 62, 153 (2002).

    Article  CAS  Google Scholar 

  7. K. Imielinska and L. Guillaumat, Compos. Sci. Technol., 64, 2271 (2004).

    Article  CAS  Google Scholar 

  8. A. B. Coffey, C. M. O’Bradaigh, and R. J. Young, J. Mater. Sci., 42, 8053 (2007).

    Article  CAS  Google Scholar 

  9. Y. Zhang, Z. Jiang, Y. Huang, and Q. Li, Fiber. Polym., 12, 1014 (2011).

    Article  CAS  Google Scholar 

  10. L. Liu, Y. Huang, Z. Zhang, Z. Jiang, and L. Wu, Appl. Surf. Sci., 254, 2594 (2008).

    Article  CAS  Google Scholar 

  11. I. J. Seabra, M. E. M. Braga, and H. C. Sousa, J. Supercrit. Fluids, 64, 9 (2012).

    Article  CAS  Google Scholar 

  12. I. C. Andrew, J. Mater. Chem., 10, 207 (2000).

    Article  Google Scholar 

  13. M. Banchero, Color. Technol., 129, 1 (2012).

    Google Scholar 

  14. Y. Sun, H. Zheng, and L. Zheng, Adv. Mater. Res., 199–200, 575 (2011).

    Article  Google Scholar 

  15. S. Okubayashi, T. Suzuma, C. Zhao, I. Tabata, K. Miyazaki, and T. Hori, Sen-i Gakkaishi, 67, 27 (2011).

    Article  CAS  Google Scholar 

  16. K. W. Hutchenson and N. R. Foster, “Innovations in Supercritical Fluids: Science and Technology”, 1st ed., pp.20–25, American Chemical Society Washington DC, 1995.

    Book  Google Scholar 

  17. S. Katayama, L. Zhao, S. Yonezawa, and Y. Iwai, J. Supercrit. Fluids, 61, 199 (2012).

    Article  CAS  Google Scholar 

  18. K. Hirogaki, I. Tabata, K. Hisada, and T. Hori, J. Supercrit. Fluids, 38, 399 (2006).

    Article  CAS  Google Scholar 

  19. T. Kim, G. Kim, J. Park, J. Lim, and K. Yoo, Ind. Eng. Chem. Res., 45, 3425 (2006).

    Article  CAS  Google Scholar 

  20. H. Zheng and L. Zheng, Fiber. Polym., 15, 1627 (2014).

    Article  CAS  Google Scholar 

  21. H. Zheng, J. Zhang, B. Du, Q. Wei, and L. Zheng, J. Appl. Polym. Sci., 132, 41756 (2015).

    Google Scholar 

  22. E. Jeong, B. H. Lee, S. J. Doh, I. J. Park, and Y. S. Lee, J. Fluor. Chem., 141, 69 (2012).

    Article  CAS  Google Scholar 

  23. H. Zhang, J. Zhang, J. Chen, X. Hao, S. Wang, X. Feng, and Y. Guo, Polym. Degrad. Stabil., 91, 2761 (2006).

    Article  CAS  Google Scholar 

  24. J. S. Lin, Eur. Polym. J., 38, 79 (2002).

    Article  CAS  Google Scholar 

  25. J. Long, C. Cui, L. Wang, H. Xu, Z. Yu, and X. Bi, J. Clean Prod., 43, 52 (2013).

    Article  CAS  Google Scholar 

  26. M. G. Northolt, Eur. Polym. J., 10, 799 (1979).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laijiu Zheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, H., Zhang, J., Du, B. et al. An investigation for the performance of meta-aramid fiber blends treated in supercritical carbon dioxide fluid. Fibers Polym 16, 1134–1141 (2015). https://doi.org/10.1007/s12221-015-1134-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-015-1134-2

Keywords

Navigation