Skip to main content

Advertisement

Log in

High-Performance Fasciated Yarn Artificial Muscles Prepared by Hierarchical Structuring and Sheath–Core Coupling for Versatile Textile Actuators

  • Research Article
  • Published:
Advanced Fiber Materials Aims and scope Submit manuscript

Abstract

High-performance yarn artificial muscles are highly desirable as miniature actuators, sensors, energy harvesters, and soft robotics. However, achieving a yarn artificial muscle that covers all the properties of excellent actuation performance, mechanical robustness, structural stability, and high scalability by a low-cost strategy is still a great challenge. Herein, a bio-inspired fasciated yarn structure is first reported for creating robust high-performance yarn artificial muscles. Unlike conventional strategies that leverage costly materials or complex processing, the developed yarn artificial muscles are constructed by hierarchically helical and sheath-core assembly design of cost-effective common fibers, such as viscose and polyester. The hierarchically helical sheath structure pushes the theoretical limit of the inserted twist in yarns and endows the yarn muscles with large stroke (5815° cm−1) and high work capacity (23.5 J kg−1). Due to the rapid water transfer and efficient energy conversion of inter-sheath–core coupling, the as-prepared yarn muscles possess fast response, high rotation accelerated speed, and low recovery hysteresis. Moreover, the inactive core yarn serves as support for internal tethering and load-bearing, enabling these yarn muscles to maintain a self-stable structure, robust life cycle and mechanics. We show that the yarn muscle fabricated in this method is readily available and highly scalable for achieving high-dimensional actuation deformations, which considerably broadens the application scenarios of artificial muscles.

Graphic abstract

The hierarchically helical and sheath-core structures are embraced to create high-performance artificial muscles with a large stroke, a fast response, a high work capacity, a self-supporting morphology and robust mechanical properties at a low-cost strategy, which boosts the scalable production and practical applications of artificial muscles and is expected to provide new opportunities in the development of miniature actuators, smart textiles and soft robotics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data that support the findings of this study are available in the supplementary material of this article.

References

  1. Wang J, Gao D, Lee PS. Recent progress in artificial muscles for interactive soft robotics. Adv Mater. 2021;33: e2003088.

    Google Scholar 

  2. Li M, Pal A, Aghakhani A, Pena-Francesch A, Sitti M. Soft actuators for real-world applications. Nat Rev Mater. 2022;7:235.

    CAS  Google Scholar 

  3. Yang M, Wu J, Jiang W, Hu X, Iqbal MI, Sun F. Bioinspired and hierarchically textile-structured soft actuators for healthcare wearables. Adv Funct Mater. 2023;33:2210351.

    CAS  Google Scholar 

  4. Leng X, Hu X, Zhao W, An B, Zhou X, Liu Z. Recent advances in twisted-fiber artificial muscles. Adv Intell Syst. 2020;3:2000185.

    Google Scholar 

  5. Mehmet K, Sirma O, Jinwoo K, Thomas B, Dani G, Timothy A, Cem T, Anantha PC, Yoel F, Polina A. Strain-programmable fiber-based artificial muscle. Science. 2019;365:145–50.

    Google Scholar 

  6. Peng Y, Zhou X, Wu J, Sheng N, Yang M, Sun F. Free-standing single-helical woolen yarn artificial muscles with robust and trainable humidity-sensing actuation by eco-friendly treatment strategies. Smart Mater Str. 2022;31: 095017.

    Google Scholar 

  7. Chu H, Hu XH, Wang Z, Mu JK, Li N, Zhou XS, Fang SL, Haines C, Park JW, Qin S, Yuan N, Xu J, Tawfick S, Kim H, Conlin P, Cho M, Cho K, Oh J, Nielsen S, Alberto KA, Razal J, Foroughi J, Spinks GM, Kim SJ, Ding J, Leng J, Baughman RH. Unipolar stroke, electroosmotic pump carbon nanotube yarn muscles. Science. 2021;371:494.

    CAS  Google Scholar 

  8. Dong L, Ren M, Wang Y, Qiao J, Wu Y, He J, Wei X, Di J, Li Q. Self-sensing coaxial muscle fibers with bi-lengthwise actuation. Mater Horiz. 2021;8:2541.

    CAS  Google Scholar 

  9. Son W, Chun S, Lee JM, Jeon G, Sim HJ, Kim HW, Cho SB, Lee D, Park J, Jeon J, Suh D, Choi C. Twist-stabilized, coiled carbon nanotube yarns with enhanced capacitance. ACS Nano. 2022;16:2661.

    CAS  Google Scholar 

  10. Mirvakili S, Hunter I. A torsional artificial muscle from twisted nitinol microwire. In: Bar-Cohen Y, (Ed). Electroactive Polymer Actuators and Devices (EAPAD); 26–29 May 2017; Portland, Oregon, USA: International Society for Optics and Photonics; 2017;pp. 1

  11. Mirvakili SM, Hunter IW. Fast torsional artificial muscles from NiTi twisted yarns. ACS Appl Mater Interfaces. 2017;9:16321.

    CAS  Google Scholar 

  12. Aziz S, Spinks GM. Torsional artificial muscles. Mater Horiz. 2020;7:667.

    CAS  Google Scholar 

  13. Foroughi J, Spinks GM, Wallace GG, Oh J, Kozlov ME, Fang S, Mirfakhrai T, Madden JDW, Shin MK, Kim SJ, Baughman RH. Torsional carbon nanotube artificial muscles. Science. 2011;334:494.

    CAS  Google Scholar 

  14. Haines CS, Li N, Spinks GM, Aliev AE, Di JT, Baughman RH. New twist on artificial muscles. PNAS. 2018;115: e2663.

    Google Scholar 

  15. Mirvakili SM, Hunter IW. Artificial muscles: mechanisms, applications, and challenges. Adv Mater. 2018;30:1704407.

    Google Scholar 

  16. Tawfick S, Tang Y. Stronger artificial muscles, with a twist. Science. 2019;365:125.

    CAS  Google Scholar 

  17. Zhou X, Fang S, Leng X, Liu Z, Baughman RH. The power of fiber twist. Accounts Chem Res. 2021;54:2624.

    CAS  Google Scholar 

  18. Hu X, Jia J, Wang Y, Tang X, Fang S, Wang Y, Baughman RH, Ding J. Fast large-stroke sheath-driven electrothermal artificial muscles with high power densities. Adv Funct Mater. 2022;32:2200591.

    CAS  Google Scholar 

  19. Kim SH, Lima MD, Kozlov ME, Haines CS, Spinks GM, Aziz S, Choi C, Sim HJ, Wang XM, Lu HB, Qian D, Madden JDW, Baughman RH, Kim SJ. Harvesting temperature fluctuations as electrical energy using torsional and tensile polymer muscles. Energy Environ Sci. 2015;8:3336.

    CAS  Google Scholar 

  20. Lee SH, Kim TH, Lima MD, Baughman RH, Kim SJ. Biothermal sensing of a torsional artificial muscle. Nanoscale. 2016;8:3248.

    CAS  Google Scholar 

  21. Wang YP, Sun JH, Liao W, Yang ZQ. Liquid crystal elastomer twist fibers toward rotating microengines. Adv Mater. 2022;34:2107840.

    CAS  Google Scholar 

  22. Hu X, Li J, Li S, Zhang G, Wang R, Liu Z, Chen M, He W, Yu K, Zhai W, Zhao W, Khan AQ, Fang S, Baughman RH, Zhou X, Liu Z. Morphology modulation of artificial muscles by thermodynamic-twist coupling. Natl Sci Rev. 2023;10:196.

    Google Scholar 

  23. Chen JW, Leung FKC, Stuart MCA, Kajitani T, Fukushima T, van der Giessen E, Feringa B. Artificial muscle-like function from hierarchical supramolecular assembly of photoresponsive molecular motors. Nat Chem. 2018;10:132.

    CAS  Google Scholar 

  24. Sarikaya S, Gardea F, Auletta JT, Kavosi J, Langrock A, Mackie DM, Naraghi M. A thermal artificial muscles with drastically improved work capacity from pH-Responsive coiled polymer fibers. Sensors Actuators B-Chem. 2021;335: 129703.

    CAS  Google Scholar 

  25. Kotak P, Weerakkody T, Lamuta C. Physics-based dynamic model for the electro-thermal actuation of bio-inspired twisted spiral artificial muscles (TSAMs). Polymer. 2021;222: 123642.

    CAS  Google Scholar 

  26. Hu L, Zhang Q, Li X, Serpe MJ. Stimuli-responsive polymers for sensing and actuation. Mater Horiz. 2019;6:1774.

    CAS  Google Scholar 

  27. Helps T, Taghavi M, Wang SH, Rossiter J. Twisted rubber variable-stiffness artificial muscles. Soft Robot. 2020;7:386.

    Google Scholar 

  28. Li S, Vogt DM, Rus D, Wood RJ. Fluid-driven origami-inspired artificial muscles. PNAS. 2017;114:13132.

    CAS  Google Scholar 

  29. Zhu ZD, Di JT, Liu XY, Qin JQ, Cheng P. Coiled polymer fibers for artificial muscle and more applications. Matter. 2022;5:1092.

    CAS  Google Scholar 

  30. Lamuta C, He HL, Zhang KH, Rogalski M, Sottos N, Tawfick S. Digital texture voxels for stretchable morphing skin applications. Adv Mater Technologies. 2019;4:1900260.

    Google Scholar 

  31. Persson NK, Martinez JG, Zhong Y, Maziz A, Jager EWH. Actuating textiles: next generation of smart textiles. Adv Mater Technol. 2018;3:1700397.

    Google Scholar 

  32. Yin Z, Shi SL, Liang XP, Zhang MC, Zheng QS, Zhang YY. Sweat-driven silk-yarn switches enabled by highly aligned gaps for air-conditioning textiles. Adv Fiber Mater. 2019;1:197.

    Google Scholar 

  33. Chen Q, Yan XN, Lu H, Zhang N, Ma MM. Programmable polymer actuators perform continuous helical motions driven by moisture. Acs Appl Mater Inter. 2019;11:20473.

    CAS  Google Scholar 

  34. He SS, Chen PN, Qiu LB, Wang BJ, Sun XM, Xu YF, Peng HS. A mechanically actuating carbon-nanotube fiber in response to water and moisture. Angewandte Chem Int Edit. 2015;54:14880.

    CAS  Google Scholar 

  35. Yang XH, Wang WH, Miao MH. Moisture-responsive natural fiber coil-structured artificial muscles. ACS Appl Mater Inter. 2018;10:32256.

    CAS  Google Scholar 

  36. Chen P, Xu Y, He S, Sun X, Pan S, Deng J, Chen D, Peng H. Hierarchically arranged helical fiber actuators driven by solvents and vapors. Nat Nanotech. 2015;10:1077.

    CAS  Google Scholar 

  37. Wang Y, Wang Z, Lu Z, de Andrade MJ, Fang S, Zhang Z, Wu J, Baughman RH. Humidity- and water-responsive torsional and contractile lotus fiber yarn artificial muscles. ACS Appl Mater Inter. 2021;13:6642.

    CAS  Google Scholar 

  38. Jia T, Wang Y, Dou Y, Li Y, Jung de Andrade M, Wang R, Fang S, Li J, Yu Z, Qiao R, Liu Z, Cheng Y, Su Y, Minary-Jolandan M, Baughman RH, Qian D, Liu Z. Moisture sensitive smart yarns and textiles from self-balanced silk fiber muscles. Adv Funct Mater. 2019;29:1808241.

    Google Scholar 

  39. Mu J, Andrade MJD, Fang S, Wang X, Gao E, Li N, Kim SH, Wang H, Hou C, Zhang Q, Zhu M, Qian D, Lu H, Kongahage D, Talebian S, Spinks G, Kim H, Ware TH, Sim HJ, Lee DY, Jang Y, Kim SJ, Baughman RH. Sheath-run artificial muscles. Science. 2019;365:150.

    CAS  Google Scholar 

  40. Haines CS, Lima MD, Li N, Spinks GM, Foroughi J, Madden JDW, Kim SH, Fang SL, de Andrade MJ, Goktepe F, Goktepe O, Mirvakili SM, Naficy S, Lepro X, Oh JY, Kozlov ME, Kim SJ, Xu XR, Swedlove BJ, Wallace GG, Baughman RH. Artificial Muscles From Fishing Line And Sewing Thread. Science. 2014;343:868.

    CAS  Google Scholar 

  41. Panaitescu A, Grason GM, Kudrolli A. Measuring geometric frustration in twisted inextensible filament bundles. Phys Rev E. 2017;95: 052503.

    Google Scholar 

  42. Hearle JWS, El-Behery HMAE, Thakur VM. The mechanics of twisted yarns : tensile properties of continuous-filament yarns. J Text Inst. 1959;50:83.

    Google Scholar 

  43. Di J, Fang S, Moura FA, Galvao DS, Bykova J, Aliev A, de Andrade MJ, Lepro X, Li N, Haines C, Ovalle-Robles R, Qian D, Baughman RH. Strong, twist-stable carbon nanotube yarns and muscles by tension annealing at extreme temperatures. Adv Mater. 2016;28:6598.

    CAS  Google Scholar 

  44. Pan N, He J-H, Yu J. Fibrous materials as soft matter. Text Res J. 2016;77:205.

    Google Scholar 

  45. Khan AQ, Yu K, Li J, Leng X, Wang M, Zhang X, An B, Fei B, Wei W, Zhuang H, Shafiq M, Bao L, Liu Z, Zhou X. Spider silk supercontraction-inspired cotton-hydrogel self-adapting textiles. Adv Fiber Mater. 2022;4:1572.

    CAS  Google Scholar 

  46. Hu Z, Li Y, Lv JA. Phototunable self-oscillating system driven by a self-winding fiber actuator. Nat Commun. 2021;12:3211.

    CAS  Google Scholar 

  47. Noselli G, Arroyo M, DeSimone A. Smart helical structures inspired by the pellicle of euglenids. J Mech Phys Solids. 2019;123:234.

    Google Scholar 

  48. Charles N, Gazzola M, Mahadevan L. Topology, geometry, and mechanics of strongly stretched and twisted filaments: solenoids, plectonemes, and artificial muscle fibers. Phys Rev Lett. 2019;123: 208003.

    CAS  Google Scholar 

  49. Peng Y, Sun F, Xiao C, Iqbal MI, Sun Z, Guo M, Gao W, Hu X. Hierarchically structured and scalable artificial muscles for smart textiles. ACS Appl Mater Interfaces. 2021;13:54386.

    CAS  Google Scholar 

  50. Sanders EM, Zeronian SH. An analysis of the moisture-related properties of hydrolyzed polyester. J Appl Polym Sci. 1982;27:4477.

    CAS  Google Scholar 

  51. de Haan LT, Verjans JM, Broer DJ, Bastiaansen CW, Schenning AP. Humidity-responsive liquid crystalline polymer actuators with an asymmetry in the molecular trigger that bend, fold, and curl. J Am Chem Soc. 2014;136:10585.

    Google Scholar 

  52. Spinks GM, Martino ND, Naficy S, Shepherd DJ, Foroughi J. Dual high-stroke and high work capacity artificial muscles inspired by DNA supercoiling. Sci Robot. 2021. https://doi.org/10.1126/scirobotics.abf4788.

    Article  Google Scholar 

  53. Shi S, Cui M, Sun F, Zhu K, Iqbal MI, Chen X, Fei B, Li RKY, Xia Q, Hu J. An Innovative solvent-responsive coiling-expanding stent. Adv Mater. 2021;33: e2101005.

    Google Scholar 

  54. Forterre Y, Skotheim JM, Dumais J, Mahadevan L. How the venus flytrap snaps. Nature. 2005;433:421.

    CAS  Google Scholar 

  55. Barella A. Law of critical yarn diameter and twist influence on yarn characteristics. Text Res J. 1950;20:249.

    Google Scholar 

  56. Leng X, Zhou X, Liu J, Xiao Y, Sun J, Li Y, Liu Z. Tuning the reversibility of hair artificial muscles by disulfide cross-linking for sensors, switches, and soft robotics. Mater Horiz. 2021;8:1538.

    CAS  Google Scholar 

  57. Lima MD, Li N, Jung de Andrade M, Fang S, Oh J, Spinks GM, Kozlov ME, Haines CS, Suh D, Foroughi J, Kim SJ, Chen Y, Ware T, Shin MK, Machado LD, Fonseca AF, Madden JD, Voit WE, Galvao DS, Baughman RH. Electrically, chemically, and photonically powered torsional and tensile actuation of hybrid carbon nanotube yarn muscles. Science. 2012;338:928.

    CAS  Google Scholar 

  58. Li S, Zhang R, Zhang G, Shuai L, Chang W, Hu X, Zou M, Zhou X, An B, Qian D, Liu Z. Microfluidic manipulation by spiral hollow-fiber actuators. Nat Commun. 2022;13:1331.

    CAS  Google Scholar 

  59. Lorenceau L, Qur D. Drops on a conical wire. J Fluid Mech. 2004;510:29.

    Google Scholar 

  60. Zheng Y, Bai H, Huang Z, Tian X, Nie FQ, Zhao Y, Zhai J, Jiang L. Directional water collection on wetted spider silk. Nature. 2010;463:640.

    CAS  Google Scholar 

  61. Chaudhury MK, Whitesides GM. How to make water run uphill. Science. 1992;256:1539.

    CAS  Google Scholar 

  62. Lin S, Wang Z, Chen X, Ren J, Ling S. Ultrastrong and highly sensitive fiber microactuators constructed by force-reeled silks. Adv Sci. 2020;7:1902743.

    CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (NSFC, Grant No. 12272149; 11802104), and partly supported by the National Key Research and Development Program (Grant No. 2017YFB0309200).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fengxin Sun or Jinlian Hu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (MP4 42473 KB)

Supplementary file2 (MP4 5453 KB)

Supplementary file3 (MP4 5075 KB)

Supplementary file4 (MP4 13163 KB)

Supplementary file5 (DOCX 2673 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheng, N., Peng, Y., Sun, F. et al. High-Performance Fasciated Yarn Artificial Muscles Prepared by Hierarchical Structuring and Sheath–Core Coupling for Versatile Textile Actuators. Adv. Fiber Mater. 5, 1534–1547 (2023). https://doi.org/10.1007/s42765-023-00301-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42765-023-00301-8

Keywords

Navigation