Skip to main content
Log in

Superhydrophilic Polydopamine-Modified Carbon-Fiber Membrane with Rapid Seawater-Transferring Ability for Constructing Efficient Hanging-Model Evaporator

  • Research Article
  • Published:
Advanced Fiber Materials Aims and scope Submit manuscript

Abstract

Solar-driven seawater desalination has attracted much attention for alleviating global freshwater shortage, but the practical application is often limited by complicated fabrication processes, unsatisfactory seawater-transferring and severe salt accumulation on the photothermal membranes. To solve these problems, hydrophobic industrial-grade carbon fiber membrane (CFM) with good photoabsorption was surface-modified with polydopamine (PDA) to prepare superhydrophilic CFM@PDA for the construction of efficient hanging-model evaporators without salt accumulation. The coating of PDA on CFM is realized by simple self-polymerization of dopamine, and the as-prepared CFM@PDA exhibits high solar absorption efficiency of 96.7%, good photothermal effect and superhydrophilicity. Especially, when CFM@PDA is hanging between two water tanks (one contains seawater and the other is empty) in a flat hanging-model evaporator, it can transport seawater at a high rate (26.35 g/h) which is 3.6 times that (7.28 g/h) of commercial cotton fabric. Under simulated sunlight (1.0 kW m−2) irradiation, CFM@PDA shows a high evaporation rate of 1.79 kg m−2 h−1 with a solar evaporation efficiency of 92.6%. Even if NaCl solution with a high concentration (21.0 wt%) is used for the evaporation, the hanging CFM@PDA can retain a high evaporation rate (~ 1.80 kg m−2 h−1) without salt accumulation during the long-time test (8 h), which is significantly better than that of the tradition floating model. Therefore, this study not only demonstrates the simple preparation of superhydrophilic CFM@PDA, but also promotes the further practical applications of hanging-model evaporators for continuous salt-free desalination.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Elimelech M, Phillip WA. The future of seawater desalination: energy, technology, and the environment. Science. 2011;333:712.

    Article  CAS  Google Scholar 

  2. Xu D, Zhu ZG, Li JS. Recent progress in electrospun nanofibers for the membrane distillation of hypersaline wastewaters. Adv Fiber Mater. 2022;4:1357.

    Article  CAS  Google Scholar 

  3. Mekonnen MM, Hoekstra AY. Four billion people facing severe water scarcity. Sci Adv. 2016;2: e1500323.

    Article  Google Scholar 

  4. Politano A, Argurio P, Di Profio G, Sanna V, Cupolillo A, Chakraborty S, Arafat HA, Curcio E. Photothermal membrane distillation for seawater desalination. Adv Mater. 2017;29:1603504.

    Article  Google Scholar 

  5. Jiang ZW, Karan S, Livingston AG. Water transport through ultrathin polyamide nanofilms used for reverse osmosis. Adv Mater. 2018;30:1705973.

    Article  Google Scholar 

  6. Yao YJ, Zhang PX, Jiang C, DuChanois RM, Zhang X, Elimelech M. High performance polyester reverse osmosis desalination membrane with chlorine resistance. Nat Sustain. 2021;4:138.

    Article  Google Scholar 

  7. Wu B, Hochstrasser F, Akhondi E, Ambauen N, Tschirren L, Burkhardt M, Fane AG, Pronk W. Optimization of gravity-driven membrane (GDM) filtration process for seawater pretreatment. Water Res. 2016;93:133.

    Article  CAS  Google Scholar 

  8. Kim K, Kim H, Lim JH, Lee SJ. Development of a desalination membrane bioinspired by mangrove roots for spontaneous filtration of sodium ions. ACS Nano. 2016;10:11428.

    Article  CAS  Google Scholar 

  9. Zhou KG, Vasu KS, Cherian CT, Neek-Amal M, Zhang JC, Ghorbanfekr-Kalashami H, Huang K, Marshall OP, Kravets VG, Abraham J, Su Y, Grigorenko AN, Pratt A, Geim AK, Peeters FM, Novoselov KS, Nair RR. Electrically controlled water permeation through graphene oxide membranes. Nature. 2018;559:236.

    Article  CAS  Google Scholar 

  10. Alkhadra MA, Gao T, Conforti KM, Tian HH, Bazant MZ. Small-Scale desalination of seawater by shock electrodialysis. Desalination. 2020;476: 114219.

    Article  CAS  Google Scholar 

  11. Gao MM, Zhu LL, Peh CK, Ho GW. Solar absorber material and system designs for photothermal water vaporization towards clean water and energy production. Energ Environ Sci. 2019;12:841.

    Article  CAS  Google Scholar 

  12. Yu Z, Gu RN, Tian Y, Xie PF, Jin BC, Cheng SA. Enhanced interfacial solar evaporation through formation of micro-meniscuses and microdroplets to reduce evaporation enthalpy. Adv Funct Mater. 2022;32:2108586.

    Article  CAS  Google Scholar 

  13. Li CX, Cao SJ, Lutzki J, Yang J, Konegger T, Kleitz F, Thomas A. A covalent organic framework/graphene dual-region hydrogel for enhanced solar-driven water generation. J Am Chem Soc. 2022;144:3083.

    Article  CAS  Google Scholar 

  14. Xu N, Zhang HR, Lin ZH, Li J, Liu GL, Li XQ, Zhao W, Min XZ, Yao PC, Zhou L, Song Y, Zhu B, Zhu SN, Zhu J. A scalable fish-school inspired self-assembled particle system for solar-powered water-solute separation. Natl Sci Rev. 2021;8:nwab065.

    Article  Google Scholar 

  15. Gao T, Wang YD, Wu X, Wu P, Yang XF, Li Q, Zhang ZZ, Zhang DK, Owens G, Xu HL. More from less: improving solar steam generation by selectively removing a portion of evaporation surface. Sci Bull. 2022;67:1572.

    Article  CAS  Google Scholar 

  16. Wang YD, Wu X, Wu P, Zhao JY, Yang XF, Owens G, Xu HL. Enhancing solar steam generation using a highly thermally conductive evaporator support. Sci Bull. 2021;66:2479.

    Article  CAS  Google Scholar 

  17. Jia J, Liang WD, Sun HX, Zhu ZQ, Wang CJ, Li A. Fabrication of bilayered attapulgite for solar steam generation with high conversion efficiency. Chem Eng J. 2019;361:999.

    Article  CAS  Google Scholar 

  18. Zhao LY, Wang L, Shi JD, Hou XY, Wang Q, Zhang Y, Wang Y, Bai NN, Yang JL, Zhang JM, Yu B, Guo CF. Shape-Programmable interfacial solar evaporator with salt-precipitation monitoring function. ACS Nano. 2021;15:5752.

    Article  CAS  Google Scholar 

  19. Han J, Xing WQ, Yan J, Wen J, Liu YT, Wang YQ, Wu ZF, Tang LC, Gao JF. Stretchable and superhydrophilic polyaniline/halloysite decorated nanofiber composite evaporator for high efficiency seawater desalination. Adv Fiber Mater. 2022;4:1233.

    Article  CAS  Google Scholar 

  20. Wang FY, Xu N, Zhao W, Zhou L, Zhu PC, Wang XY, Zhu B, Zhu J. A high-performing single-stage invert-structured solar water purifier through enhanced absorption and condensation. Joule. 2021;5:1602.

    Article  CAS  Google Scholar 

  21. Wu P, Wu X, Wang YD, Xu HL, Owens G. Towards sustainable saline agriculture: interfacial solar evaporation for simultaneous seawater desalination and saline soil remediation. Water Res. 2022;212: 118099.

    Article  CAS  Google Scholar 

  22. Zielinski MS, Choi JW, La Grange T, Modestino M, Hashemi SMH, Pu Y, Birkhold S, Hubbell JA, Psaltis D. Hollow mesoporous plasmonic nanoshells for enhanced solar vapor generation. Nano Lett. 2016;16:2159.

    Article  CAS  Google Scholar 

  23. Zhang CB, Yan C, Xue ZJ, Yu W, Xie YD, Wang T. Shape-Controlled synthesis of high-quality Cu7S4 nanocrystals for efficient light-induced water evaporation. Small. 2016;12:5320.

    Article  CAS  Google Scholar 

  24. Wang XQ, Ou G, Wang N, Wu H. Graphene-Based recyclable photo-absorbers for high-efficiency seawater desalination. ACS Appl Mater Inter. 2016;8:9194.

    Article  CAS  Google Scholar 

  25. Chala TF, Wu CM, Chou MH, Guo ZL. Melt electrospun reduced tungsten oxide/polylactic acid fiber membranes as a photothermal material for light-driven interfacial water evaporation. ACS Appl Mater Inter. 2018;10:28955.

    Article  CAS  Google Scholar 

  26. Wang J, Li YY, Deng L, Wei NN, Weng YK, Dong S, Qi DP, Qiu J, Chen XD, Wu T. High-Performance photothermal conversion of narrow-bandgap Ti2O3 nanoparticles. Adv Mater. 2017;29:1603730.

    Article  Google Scholar 

  27. Zhao L, Yang QZ, Guo W, Liu HX, Ma TY, Qu FY. Co2.67S4-Based photothermal membrane with high mechanical properties for efficient solar water evaporation and photothermal antibacterial applications. ACS Appl Mater Inter. 2019;11:20820.

    Article  CAS  Google Scholar 

  28. Shao Y, Jiang ZP, Zhang YJ, Wang TZ, Zhao P, Zhang Z, Yuan JY, Wang H. All-Poly(ionic liquid) membrane-derived porous carbon membranes: scalable synthesis and application for photothermal conversion in seawater desalination. ACS Nano. 2018;12:11704.

    Article  CAS  Google Scholar 

  29. Zhang LB, Tang B, Wu JB, Li RY, Wang P. Hydrophobic light-to-heat conversion membranes with self-healing ability for interfacial solar heating. Adv Mater. 2015;27:4889.

    Article  CAS  Google Scholar 

  30. Yang Y, Zhao RQ, Zhang TF, Zhao K, Xiao PS, Ma YF, Ajayan PM, Shi GQ, Chen YS. Graphene-Based standalone solar energy converter for water desalination and purification. ACS Nano. 2018;12:829.

    Article  CAS  Google Scholar 

  31. Zhu B, Kou H, Liu ZX, Wang ZJ, Macharia DK, Zhu MF, Wu BH, Liu XG, Chen ZG. Flexible and washable CNT-embedded PAN nonwoven fabrics for solar-enabled evaporation and desalination of seawater. ACS Appl Mater Inter. 2019;11:35005.

    Article  CAS  Google Scholar 

  32. Yu ST, Zhang Y, Duan HZ, Liu YM, Quan XJ, Tao P, Shang W, Wu JB, Song CY, Deng T. The impact of surface chemistry on the performance of localized solar-driven evaporation system. Sci Rep. 2015;5:13600.

    Article  Google Scholar 

  33. Kou H, Liu ZX, Zhu B, Macharia DK, Ahmed S, Wu BH, Zhu MF, Liu XG, Chen ZG. Recyclable CNT-coupled cotton fabrics for low-cost and efficient desalination of seawater under sunlight. Desalination. 2019;462:29.

    Article  CAS  Google Scholar 

  34. Zhang PP, Li J, Lv LX, Zhao Y, Qu LT. Vertically aligned graphene sheets membrane for highly efficient solar thermal generation of clean water. ACS Nano. 2017;11:5087.

    Article  CAS  Google Scholar 

  35. Ghasemi H, Ni G, Marconnet AM, Loomis J, Yerci S, Miljkovic N, Chen G. Solar steam generation by heat localization. Nat Commun. 2014;5:4449.

    Article  CAS  Google Scholar 

  36. Li T, Liu H, Zhao XP, Chen G, Dai JQ, Pastel G, Jia C, Chen CJ, Hitz E, Siddhartha D, Yang RG, Hu LB. Scalable and highly efficient mesoporous wood-based solar steam generation device: localized heat, rapid water transport. Adv Funct Mater. 2018;28:1707134.

    Article  Google Scholar 

  37. Yao W, Li XY, Zhu XD, Pei LY, Liu GL, Cheng Y, Chee MOL, Dong P, Shen JF, Ye MX. Thermal-localized and salt-resistant polyacrylonitrile/polyvinylidene fluoride aerogel for efficient solar desalination. Desalination. 2022;532: 115751.

    Article  CAS  Google Scholar 

  38. Zhao W, Gong H, Song Y, Li B, Xu N, Min XZ, Liu GL, Zhu B, Zhou L, Zhang XX, Zhu J. Hierarchically designed salt-resistant solar evaporator based on donnan effect for stable and high-performance brine treatment. Adv Funct Mater. 2021;31:2100025.

    Article  CAS  Google Scholar 

  39. Liu ZX, Zhong QP, Wu NY, Zhou HZ, Wang LX, Zhu LQ, Jiang N, Zhu B, Chen ZG, Zhu MF. Vertically symmetrical evaporator based on photothermal fabrics for efficient continuous desalination through inversion strategy. Desalination. 2021;509: 115072.

    Article  CAS  Google Scholar 

  40. Li CC, Zhu B, Liu ZX, Zhao JT, Meng RR, Zhang LS, Chen ZG. Polyelectrolyte-based photothermal hydrogel with low evaporation enthalpy for solar-driven salt-tolerant desalination. Chem Eng J. 2022;431: 134224.

    Article  CAS  Google Scholar 

  41. Liu ZX, Wu BH, Zhu B, Chen ZG, Zhu MF, Liu XG. Continuously producing watersteam and concentrated brine from seawater by hanging photothermal fabrics under sunlight. Adv Funct Mater. 2019;29:1905485.

    Article  CAS  Google Scholar 

  42. Liu ZX, Zhou Z, Wu NY, Zhang RQ, Zhu B, Jin H, Zhang YM, Zhu MF, Chen ZG. Hierarchical photothermal fabrics with low evaporation enthalpy as heliotropic evaporators for efficient, continuous, salt-free desalination. ACS Nano. 2021;15:13007.

    Article  CAS  Google Scholar 

  43. Jiang GY, Jiang N, Zheng N, Chen X, Mao JY, Ding GY, Li YH, Sun FG, Li YS. MOF-derived porous Co3O4-NC nanoflake arrays on carbon fiber cloth as stable hosts for dendrite-free Li metal anodes. Energy Storage Mater. 2019;23:181.

    Article  Google Scholar 

  44. Liu SN, Cai ZY, Zhou J, Zhu MN, Pan AQ, Liang SQ. High-performance sodium-ion batteries and flexible sodium-ion capacitors based on Sb2X3 (X = O, S)/carbon fiber cloth. J Mater Chem A. 2017;5:9169.

    Article  CAS  Google Scholar 

  45. Lu Q, Zou XH, Liao KM, Ran R, Zhou W, Ni M, Shao ZP. Direct growth of ordered N-doped carbon nanotube arrays on carbon fiber cloth as a free-standing and binder-free air electrode for flexible quasi-solid-state rechargeable Zn-Air batteries. Carbon Energy. 2020;2:461.

    Article  CAS  Google Scholar 

  46. Wang C, Zhang JS, Wang XF, Lin CF, Zhao XS. Hollow rutile cuboid arrays grown on carbon fiber cloth as a flexible electrode for sodium-ion batteries. Adv Funct Mater. 2020;30:2002629.

    Article  CAS  Google Scholar 

  47. Shen XF, Zhang TY, Xu PF, Zhang LS, Liu JS, Chen ZG. Growth of C3N4 nanosheets on carbon-fiber cloth as flexible and macroscale filter-membrane-shaped photocatalyst for degrading the flowing wastewater. Appl Catal B Environ. 2017;219:425.

    Article  CAS  Google Scholar 

  48. Wu Z, Yang JH, Shao WJ, Cheng MH, Luo XL, Zhou M, Li S, Ma T, Cheng C, Zhao CS. High-valence transition metal modified FeNiV oxides anchored on carbon fiber cloth for efficient oxygen evolution catalysis. Adv Fiber Mater. 2022;4:774.

    Article  CAS  Google Scholar 

  49. Liu HC, Huang GC, Wang R, Huang L, Wang HZ, Hu YZ, Cong GT, Bao F, Xu M, Zhu CZ, Xu J, Ji MW. Carbon nanotubes grown on the carbon fibers to enhance the photothermal conversion toward solar-driven applications. ACS Appl Mater Inter. 2022;14:32404.

    Article  CAS  Google Scholar 

  50. Wang J, Shi QQ, Li CJ, Zhang YZ, Du SY, Mao JF, Wang J. Pistia-Inspired photothermal fabric based on waste carbon fiber for low-cost vapor generation: an industrialization route. Adv Funct Mater. 2022;32:2201922.

    Article  CAS  Google Scholar 

  51. Li S, Li YG, Shao YL, Wang HZ. Emerging two-dimensional materials constructed nanofluidic fiber: Properties, preparation and applications. Adv Fiber Mater. 2022;4:129.

    Article  CAS  Google Scholar 

  52. Bao QL, Loh KP. Graphene photonics, plasmonics, and broadband optoelectronic devices. ACS Nano. 2012;6:3677.

    Article  CAS  Google Scholar 

  53. Wu HY, Chen RT, Shao YW, Qi XD, Yang JH, Wang Y. Novel flexible phase change materials with mussel-inspired modification of melamine foam for simultaneous light-actuated shape memory and light-to-thermal energy storage capability. ACS Sustain Chem Eng. 2019;7:13532.

    Article  CAS  Google Scholar 

  54. Lee H, Dellatore SM, Miller WM, Messersmith PB. Mussel-Inspired surface chemistry for multifunctional coatings. Science. 2007;318:426.

    Article  CAS  Google Scholar 

  55. Zhang HZ, Liu QY, Fang YB, Teng CL, Liu XQ, Fang PP, Tong YX, Lu XH. Boosting Zn-ion energy storage capability of hierarchically porous carbon by promoting chemical adsorption. Adv Mater. 2019;31:1904948.

    Article  CAS  Google Scholar 

  56. Huang C, Hu AP, Li YH, Zhou HF, Xu YL, Zhang Y, Zhou SP, Tang QL, Chen CS, Chen XH. Room temperature ultrafast synthesis of N- and O-rich graphene films with an expanded interlayer distance for high volumetric capacitance supercapacitors. Nanoscale. 2019;11:16515.

    Article  CAS  Google Scholar 

  57. Wu Q, Wan QQ, Yang X, Wang F, Zhu JF. Effects of chain length of polyether amine on interfacial adhesion of carbon fiber/epoxy composite in the absence or presence of polydopamine bridging platform. Appl Surf Sci. 2021;547: 149162.

    Article  CAS  Google Scholar 

  58. Gu B, Pu GH, Ding BN, Zhang K, He R, Fan JH, Xing T, Wu JY, Yang WB. Improved interfacial bonding strength of silicone rubber/carbon fiber modified by dopamine. Polym Composite. 2022;43:6975.

    Article  CAS  Google Scholar 

  59. Liu Y, Fang YC, Liu XL, Wang XL, Yang B. Mussel-inspired modification of carbon fiber via polyethyleneimine/polydopamine co-deposition for the improved interfacial adhesion. Compos Sci Technol. 2017;151:164.

    Article  CAS  Google Scholar 

  60. Huang C, Zhao X, Xu Y, Zhang Y, Yang YJ, Hu AP, Tang QL, Song XY, Jiang CZ, Chen XH. Sewable and cuttable flexible zinc-ion hybrid supercapacitor using a polydopamine/carbon cloth-based cathode. ACS Sustain Chem Eng. 2020;8:16028.

    Article  CAS  Google Scholar 

  61. Liu TY, Kim KC, Lee B, Chen ZM, Noda S, Jang SS, Lee SW. Self-polymerized dopamine as an organic cathode for Li- and Na-ion batteries. Energ Environ Sci. 2017;10:205.

    Article  CAS  Google Scholar 

  62. Liu YM, Yu ST, Feng R, Bernard A, Liu Y, Zhang Y, Duan H, Shang W, Tao P, Song CQ, Deng T. A bioinspired, reusable, paper-based system for high-performance large-scale evaporation. Adv Mater. 2015;27:2768.

    Article  CAS  Google Scholar 

  63. Wang G, Fu Y, Ma XF, Pi WB, Liu DW, Wang XB. Reusable reduced graphene oxide based double-layer system modified by polyethylenimine for solar steam generation. Carbon. 2017;114:117.

    Article  CAS  Google Scholar 

  64. Xu N, Li JL, Wang Y, Fang C, Li XQ, Wang YX, Zhou L, Zhu B, Wu Z, Zhu SN, Zhu J. A water lily-inspired hierarchical design for stable and efficient solar evaporation of high-salinity brine. Sci Adv. 2019;5:eaaw7013.

    Article  CAS  Google Scholar 

  65. Organization WH. Safe drinking-water from desalination. WHO Press. 2017.https://www.who.int/publications/i/item/9789241549950. Accessed 24 Apr 2017.

Download references

Acknowledgements

This work was financially by National Key Research and Development Program of China (2022YFB3804902, 2022YFB3804900), the National Natural Science Foundation of China (52161145406, 51972056), Program of Shanghai Academic Research Leader (20XD1420200), the Natural Science Foundation of Shanghai (21ZR1402500).

Author information

Authors and Affiliations

Authors

Contributions

WC: conceptualization, investigation, writing-original draft, writing-review and editing. RM: investigation, validation, writing-original draft. ZL: investigation. QL: data curation. JH: validation. BZ: investigation. DKM: investigation. ZC: supervision, project administration, writing-review and editing. LZ: supervision, project administration, writing-review and editing.

Corresponding authors

Correspondence to Zhigang Chen or Lisha Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no confict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4557 KB)

Supplementary file2 (MP4 16816 KB)

Supplementary file3 (MP4 2042 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chong, W., Meng, R., Liu, Z. et al. Superhydrophilic Polydopamine-Modified Carbon-Fiber Membrane with Rapid Seawater-Transferring Ability for Constructing Efficient Hanging-Model Evaporator. Adv. Fiber Mater. 5, 1063–1075 (2023). https://doi.org/10.1007/s42765-023-00276-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42765-023-00276-6

Keywords

Navigation