Skip to main content
Log in

Highly Stretchable Ionic and Electronic Conductive Fabric

  • Research Article
  • Published:
Advanced Fiber Materials Aims and scope Submit manuscript

Abstract

Wearable devices redefine the way people interact with machines. Despite the intensive effort in the design and fabrication of synthetic fibers to improve wearable device properties in terms of electronic and ionic conductivity, stretchability, comfort, and washability, challenges remain in fabricating single fiber materials that optimize all properties simultaneously. In this work, we demonstrate a highly stretchable, ionic, and electronic conductive fabric via (1) the natural nanoscale channels in fibers for effective ion transportation, (2) confining the electronic conductive material with the cellulose fibers, and (3) decoupling the property degradation of the fiber from deformation using the knitted pattern. The hierarchical structure created by cotton fibers can serve as ionic conductive channels as well as a robust multiscale scaffold to host infiltrated electronic conductive materials. Cotton strands with ionic and electronic conductivity can be knitted into fabrics that are highly stretchable (~ 300%). Moreover, high ionic and electronic conductivity are observed with 2 S/m and 5 S/m, respectively, even under a strain of 175%. With the inherent advantages of cotton fabrics such as moisture-wicking, washability, comfort, and light-weightiness for wearable applications, our approach of directly functionalized cellulose can potentially be a promising route towards highly stretchable and wearable mixed conductors.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Li L, Liu Y, Song C, Sheng S, Yang L, Yan Z, Hu DJJ, Sun Q. Wearable alignment-free microfiber-based sensor chip for precise vital signs monitoring and cardiovascular assessment. Adv Fiber Mater 2022;4:475.

    Article  Google Scholar 

  2. Wang J, Wang L, Feng J, Tang C, Sun X, Peng H. Long-term In Vivo Monitoring of Chemicals with Fiber Sensors. Adv Fiber Mater 2021;3:47.

    Article  CAS  Google Scholar 

  3. Kang S, Zhao K, Yu D-G, Zheng X, Huang C. Advances in biosensing and environmental monitoring based on electrospun nanofibers. Adv Fiber Mater 2022;4:404.

    Article  CAS  Google Scholar 

  4. Wang W, Yu A, Zhai J, Wang ZL. Recent progress of functional fiber and textile triboelectric nanogenerators: towards electricity power generation and intelligent sensing. Adv Fiber Mater 2021;3:394.

    Article  CAS  Google Scholar 

  5. Cao R, Pu X, Du X, Yang W, Wang J, Guo H, Zhao S, Yuan Z, Zhang C, Li C, Wang ZL. Screen-printed washable electronic textiles as self-powered touch/gesture tribo-sensors for intelligent human-machine interaction. ACS Nano 2018;12:5190.

    Article  CAS  Google Scholar 

  6. Loke G, Alain J, Yan W, Khudiyev T, Noel G, Yuan R, Missakian A, Fink Y. Computing Fabrics. Matter 2020;2:786.

    Article  Google Scholar 

  7. Xue Z, Song H, Rogers JA, Zhang Y, Huang Y. Mechanically guided structural designs in stretchable inorganic electronics. Adv Mater 2020;32:e1902254.

    Article  Google Scholar 

  8. Fan JA, Yeo WH, Su Y, Hattori Y, Lee W, Jung SY, Zhang Y, Liu Z, Cheng H, Falgout L, Bajema M, Coleman T, Gregoire D, Larsen RJ, Huang Y, Rogers JA. Fractal design concepts for stretchable electronics. Nat Commun 2014;5:3266.

    Article  Google Scholar 

  9. Shyu TC, Damasceno PF, Dodd PM, Lamoureux A, Xu L, Shlian M, Shtein M, Glotzer SC, Kotov NA. A Kirigami approach to engineering elasticity in nanocomposites through patterned defects. Nat Mater 2015;14:785.

    Article  CAS  Google Scholar 

  10. Xu J, Wu HC, Zhu C, Ehrlich A, Shaw L, Nikolka M, Wang S, Molina-Lopez F, Gu X, Luo S, Zhou D, Kim YH, Wang GN, Gu K, Feig VR, Chen S, Kim Y, Katsumata T, Zheng YQ, Yan H, Chung JW, Lopez J, Murmann B, Bao Z. Multi-scale ordering in highly stretchable polymer semiconducting films. Nat Mater 2019;18:594.

    Article  CAS  Google Scholar 

  11. Oh JY, Rondeau-Gagne S, Chiu YC, Chortos A, Lissel F, Wang GN, Schroeder BC, Kurosawa T, Lopez J, Katsumata T, Xu J, Zhu C, Gu X, Bae WG, Kim Y, Jin L, Chung JW, Tok JB, Bao Z. Intrinsically stretchable and healable semiconducting polymer for organic transistors. Nature 2016;539:411.

    Article  CAS  Google Scholar 

  12. Wang GJN, Gasperini A, Bao Z. Stretchable polymer semiconductors for plastic electronics. Adv Electron Mater 2018;4:1700429.

    Article  Google Scholar 

  13. Ohayon D, Inal S. Organic bioelectronics: from functional materials to next-generation devices and power sources. Adv Mater 2020;32:e2001439.

    Article  Google Scholar 

  14. Zhu Y, Peng L, Fang Z, Yan C, Zhang X, Yu G. Structural engineering of 2D nanomaterials for energy storage and catalysis. Adv Mater 2018;30:e1706347.

    Article  Google Scholar 

  15. Inal S, Malliaras GG, Rivnay J. Benchmarking organic mixed conductors for transistors. Nat Commun 2017;8:1767.

    Article  Google Scholar 

  16. Han S, Alvi NUH, Granlof L, Granberg H, Berggren M, Fabiano S, Crispin X. A multiparameter pressure-temperature-humidity sensor based on mixed ionic-electronic cellulose aerogels. Adv Sci (Weinh) 2019;6:128.

    Google Scholar 

  17. Tan STM, Gumyusenge A, Quill TJ, LeCroy GS, Bonacchini GE, Denti I, Salleo A. Mixed ionic-electronic conduction, a multifunctional property in organic conductors. Adv Mater 2022;34:e2110406.

    Article  Google Scholar 

  18. Lei Z, Wu P. A highly transparent and ultra-stretchable conductor with stable conductivity during large deformation. Nat Commun 2019;10:3429.

    Article  Google Scholar 

  19. Martin-Martinez FJ. Designing nanocellulose materials from the molecular scale. Proc Natl Acad Sci USA 2018;115:7174.

    Article  CAS  Google Scholar 

  20. Li T, Zhang X, Lacey SD, Mi R, Zhao X, Jiang F, Song J, Liu Z, Chen G, Dai J, Yao Y, Das S, Yang R, Briber RM, Hu L. Cellulose ionic conductors with high differential thermal voltage for low-grade heat harvesting. Nat Mater 2019;18:608.

    Article  CAS  Google Scholar 

  21. Zhang C, Chen M, Keten S, Coasne B, Derome D, Carmeliet J. Hygromechanical mechanisms of wood cell wall revealed by molecular modeling and mixture rule analysis. Sci Adv 2021;7:1.

    Google Scholar 

  22. Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J. Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 2011;40:3941.

    Article  CAS  Google Scholar 

  23. Varghese AM, Mittal V. Surface modification of natural fibers. In: Shimpi NG, editor. Biodegradable and biocompatible polymer composites. 2018; pp. 115–186.

  24. Han X, Ye Y, Lam F, Pu J, Jiang F. Hydrogen-bonding-induced assembly of aligned cellulose nanofibers into ultrastrong and tough bulk materials. J Mater Chem A Mater 2019;7:27023.

    Article  CAS  Google Scholar 

  25. Xie Y, Gao H, Zhang P, Qin C, Nie Y, Liu X. Preparation of degradable wood cellulose films using ionic liquids. ACS Appl Polym Mater 2022;4:3598.

    Article  CAS  Google Scholar 

  26. Putnam CD, Hammel M, Hura GL, Tainer JA. X-ray solution scattering (SAXS) combined with crystallography and computation: defining accurate macromolecular structures, conformations and assemblies in solution. Q Rev Biophys 2007;40:191.

    Article  CAS  Google Scholar 

  27. Fu K, Yang Z, Pei Y, Wang Y, Xu B, Wang Y, Yang B, Hu L. Designing textile architectures for high energy-efficiency human body sweat- and cooling-management. Adv Fiber Mater 2019;1:61.

    Article  Google Scholar 

  28. Liu X, Miao J, Fan Q, Zhang W, Zuo X, Tian M, Zhu S, Zhang X, Qu L. Recent progress on smart fiber and textile based wearable strain sensors: materials, fabrications and applications. Adv Fiber Mater 2022;4:361.

    Article  CAS  Google Scholar 

  29. Chen N, Luo B, Patil AC, Wang J, Gammad GGL, Yi Z, Liu X, Yen SC, Ramakrishna S, Thakor NV. Nanotunnels within poly(3,4-ethylenedioxythiophene)-carbon nanotube composite for highly sensitive neural interfacing. ACS Nano 2020;14:8059.

    Article  CAS  Google Scholar 

  30. Li T, Li SX, Kong W, Chen C, Hitz E, Jia C, et al. A nanofluidic ion regulation membrane with aligned cellulose nanofibers. Sci Adv 2019;5:1.

    Google Scholar 

  31. Li T, Chen C, Brozena AH, Zhu JY, Xu L, Driemeier C, Dai J, Rojas OJ, Isogai A, Wagberg L, Hu L. Developing fibrillated cellulose as a sustainable technological material. Nature 2021;590:47.

    Article  CAS  Google Scholar 

  32. Ostler D, Kannam SK, Frascoli F, Daivis PJ, Todd BD. Efficiency of electropumping in nanochannels. Nano Lett 2020;20:3396.

    Article  CAS  Google Scholar 

  33. Liu M, Weston PJ, Hurt RH. Controlling nanochannel orientation and dimensions in graphene-based nanofluidic membranes. Nat Commun 2021;12:507.

    Article  CAS  Google Scholar 

  34. Min SK, Kim WY, Cho Y, Kim KS. Fast DNA sequencing with a graphene-based nanochannel device. Nat Nanotechnol 2011;6:162.

    Article  CAS  Google Scholar 

  35. Kobayashi Y, Honjo K, Kitagawa S, Uemura T. Preparation of porous polysaccharides templated by coordination polymer with three-dimensional nanochannels. ACS Appl Mater Interfaces 2017;9:11373.

    Article  CAS  Google Scholar 

  36. Zhu Z, Chen Y, Xu Z, Yu Z, Luo X, Zhou J, Tian Y, Jiang L. Super-spreading on superamphiphilic micro-organized nanochannel anodic aluminum oxide surfaces for heat dissipation. iScience 2021;24:102334.

    Article  CAS  Google Scholar 

  37. Rivnay J, Inal S, Salleo A, Owens RM, Berggren M, Malliaras GG. Organic electrochemical transistors. Nat Rev Mater 2018;3:17086.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Dr. Kejie Zhao and Xiaokang Wang for their helpful discussion.

We acknowledge the Start-up fund from Purdue University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tian Li.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1011 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, P., Li, X., Wang, Y. et al. Highly Stretchable Ionic and Electronic Conductive Fabric. Adv. Fiber Mater. 5, 198–208 (2023). https://doi.org/10.1007/s42765-022-00208-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42765-022-00208-w

Keywords

Navigation