Skip to main content

Advertisement

Log in

Robust and Flexible Multimaterial Aerogel Fabric Toward Outdoor Passive Heating

  • Research Article
  • Published:
Advanced Fiber Materials Aims and scope Submit manuscript

Abstract

Outdoor passive heating to maintain a constant human body temperature is critical for human activities. However, most traditional energy-exhausted heating systems and inefficient passive heating technologies are incapable of dealing with the cold outdoor environment. Developing fabrics with low thermal radiation and conduction to passively heat the human body is a viable way to overcome the constraints of existing passive heating strategies. Herein, a multimaterial aerogel fabric was developed to realize passive personal heating without any energy input. The multimaterial aerogel fabric was fabricated by coating an Ag layer on an aerogel composite fabric. The lightweight aerogel composite fabric, woven from aerogel composite fibers with multi-scale porous structure, exhibits excellent thermal insulation, self-cleaning, mechanical and thermal stability. Furthermore, by coating with an Ag layer, the multimaterial aerogel fabric exhibits both low thermal conductivity and low infrared emissivity at 7–14 μm, demonstrating superior thermal insulating performance. As a result, the proposed multimaterial aerogel fabric with a thickness of only 1.29 mm is capable of improving the human body temperarure of 5.7 °C in a cold environment without energy input. This strategy offers a potential energy-saving alternative for future outdoor passive heating.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Wu J, Hu R, Zeng S, Xi W, Huang S, Deng J, Tao G. Flexible and robust biomaterial microstructured colored textiles for personal thermoregulation. ACS Appl Mater Interfaces 2020;1216:19015.

    Article  Google Scholar 

  2. Zeng S, Pian S, Su M, Wang Z, Wu M, Liu X, Chen M, Xiang Y, Wu J, Zhang M. Hierarchical-morphology metafabric for scalable passive daytime radiative cooling. Science 2021;373:692.

    Article  CAS  Google Scholar 

  3. Xue T, Zhu C, Feng X, Wali Q, Fan W, Liu T. Polyimide aerogel fibers with controllable porous microstructure for super-thermal insulation under extreme environments. Adv Fiber Mater 2022;2:338.

    Google Scholar 

  4. Fu K, Yang Z, Pei Y, Wang Y, Xu B, Wang Y, Yang B, Hu L. Designing textile architectures for high energy-efficiency human body sweat-and cooling management. Adv Fiber Mater 2019;11:61.

    Google Scholar 

  5. Guo Y, Li K, Hou C, Li Y, Zhang Q, Wang H. Management device for multifunctional wearable applications. ACS Appl Mater Interfaces 2016;8:4676.

    Article  CAS  Google Scholar 

  6. Tong JK, Huang X, Boriskina SV, Loomis J, Xu Y, Chen G. Infrared-transparent visible-opaque fabrics for wearable personal thermal management. ACS Photon 2015;26:769.

    Article  Google Scholar 

  7. Engelhardt S, Sarsour J. Solar heat harvesting and transparent insulation in textile architecture inspired by polar bear fur. Energy Build 2015;103:96.

    Article  Google Scholar 

  8. Pérez-Lombard L, Ortiz J, Pout C. A review on buildings energy consumption information. Energy Build 2008;403:394.

    Article  Google Scholar 

  9. Chu S, Majumdar A. Opportunities and challenges for a sustainable energy future. Nature 2012;488:294.

    Article  CAS  Google Scholar 

  10. Hsu PC, Song AY, Catrysse PB, Liu C, Peng Y, Xie J, Fan S, Cui Y. Radiative human body cooling by nanoporous polyethylene textile. Science 2016;353:1019.

    Article  CAS  Google Scholar 

  11. Hsu PC, Liu C, Song AY, Zhang Z, Peng Y, Xie J, Liu K, Wu CL, Catrysse PB. A dual-mode textile for human body radiative heating and cooling. Sci Adv 2017;3:1700895.

    Article  Google Scholar 

  12. Yan W, Dong C, Xiang Y, Jiang S, Leber A, Gabriel L, Xu W, Hou C, Zhou S, Chen M, Hu R, Shum PP, Wei L, Jia X, Sorin F, Tao X, Tao G. Thermally drawn advanced functional fibers: new frontier of flexible electronics. Mater Today 2020;35:168.

    Article  CAS  Google Scholar 

  13. Peng Y, Cui Y. Advanced textiles for personal thermal management and energy. Joule 2020;4:724.

    Article  CAS  Google Scholar 

  14. Venkataraman M, Mishra R, Kotresh T, Militky J, Jamshaid H. Aerogels for thermal insulation in high-performance textiles. Text Prog 2016;482:55.

    Article  Google Scholar 

  15. Hardy JD, Dubois EF. Regulation of heat loss from the human body. Proc Natl Acad Sci USA 1937;2312:624.

    Article  Google Scholar 

  16. Kaya GG, Deveci H. Synergistic effects of silica aerogels/xerogels on properties of polymer composites: a review. J Ind Eng Chem 2020;89:13.

    Article  Google Scholar 

  17. Meng S, Zhang J, Chen W, Wang X, Zhu M. Construction of continuous hollow silica aerogel fibers with hierarchical pores and excellent adsorption performance. Micropor Mesopor Mater 2019;273:294.

    Article  CAS  Google Scholar 

  18. Sai H, Wang M, Miao C, Song Q, Wang Y, Fu R, Wang Y, Ma L, Hao Y. Robust silica-bacterial cellulose composite aerogel fibers for thermal insulation textile. Gels 2021;73:145.

    Article  Google Scholar 

  19. Huang T, Zhu Y, Zhu J, Yu H, Zhang Q, Zhu M. Self-reinforcement of light, temperature-resistant silica nanofibrous aerogels with tunable mechanical properties. Adv Fiber Mater 2020;26:338.

    Article  CAS  Google Scholar 

  20. Mazraeh-Shahi ZT, Shoushtari AM, Bahramian AR, Abdouss M. Synthesis, structure and thermal protective behavior of silica aerogel/PET nonwoven fiber composite. Fibers Polym 2014;1510:2154.

    Article  Google Scholar 

  21. Wu DY, Wang SS, Wu CS. Textile fabrics containing recycled poly (ethylene terephthalate), oyster shells, and silica aerogels with superior heat insulation, water resistance, and antibacterial properties. ACS Appl Polym Mater 2021;36:3175.

    Article  Google Scholar 

  22. Nocentini K, Achard P, Biwole P. Hygro-thermal properties of silica aerogel blankets dried using microwave heating for building thermal insulation. Energy Build 2018;168:165.

    Article  Google Scholar 

  23. Wang M, Pan N. Modeling and prediction of the effective thermal conductivity of random open-cell porous foams. Int J Heat Mass Transfer 2008;51:1325.

    Article  CAS  Google Scholar 

  24. Hsu PC, Liu X, Liu C, Xie X, Lee HR, Welch AJ, Zhao T, Cui Y. Personal thermal management by metallic nanowire-coated textile. Nano Lett 2015;151:365.

    Article  Google Scholar 

  25. Cai L, Song AY, Wu P, Hsu PC, Peng Y, Chen J, Liu C, Catrysse PB, Liu Y, Yang A. Warming up human body by nanoporous metallized polyethylene textile. Nat Commun 2017;81:1.

    Google Scholar 

  26. Luo H, Li Q, Du K, Xu Z, Zhu H, Liu D, Cai L, Ghosh P, Qiu M. An ultra-thin colored textile with simultaneous solar and passive heating abilities. Nano Energy 2019;65:103998.

    Article  Google Scholar 

  27. Shi M, Shen M, Guo X, Jin X, Cao Y, Yang Y, Wang W, Wang J. Ti3C2Tx MXene-decorated nanoporous polyethylene textile for passive and active personal precision heating. ACS Nano 2021;157:11396.

    Article  Google Scholar 

  28. Hayes SG, Venkatraman P. Materials and technology for sportswear and performance apparel. 1st ed. CRC Press Boca Raton. 2016.

  29. Zhou G, Byun JH, Oh Y, Jung BM, Cha HJ, Seong DG, Um MK, Hyun S, Chou TW. Highly sensitive wearable textile-based humidity sensor made of high-strength, single-walled carbon nanotube/poly (vinyl alcohol) filaments. ACS Appl Mater Interfaces 2017;95:4788.

    Article  Google Scholar 

  30. Pierre AC, Pajonk GM. Chemistry of aerogels and their applications. Chem Rev 2002;102:4243–65.

    Article  CAS  Google Scholar 

  31. Ding G, Tai H, Chen C, Sun C, Tang Z, Cheng G, Wan X, Wang Z. The effect of silicon dioxide nanoparticle-covered grapheneoxide on mechanical properties, thermal stability andrheological performance of thermoplastic polyurethanes. J Appl Polym Sci 2022;139:e51947.

    Article  Google Scholar 

  32. Cui Y, Gong H, Wang Y, Li D, Bai H. A thermally insulating textile inspired by polar bear hair. Adv Mater 2018;30:1706807.

    Article  Google Scholar 

  33. Peng Y, Chen J, Song AY, Catrysse PB, Hsu PC, Cai L, Liu B, Zhu Y, Zhou G, Wu DS. Nanoporous polyethylene microfibres for large-scale radiative cooling fabric. Nat Sustain 2018;12:105.

    Article  Google Scholar 

  34. Zhang XA, Yu S, Xu B, Li M, Peng Z, Wang Y, Deng S, Wu X, Wu Z, Ouyang M. Dynamic gating of infrared radiation in a textile. Science 2019;363:619.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (62175082). The authors are grateful for the assistance from the Testing Center of Huazhong University of Science and Technology (HUST) on the materials characterizations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangming Tao.

Ethics declarations

Conflict of interest

The authors state that there are no conflicts of interest to disclose.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2434 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, J., Zhang, M., Su, M. et al. Robust and Flexible Multimaterial Aerogel Fabric Toward Outdoor Passive Heating. Adv. Fiber Mater. 4, 1545–1555 (2022). https://doi.org/10.1007/s42765-022-00188-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42765-022-00188-x

Keywords

Navigation