Skip to main content
Log in

Breathable Kirigami-Shaped Ionotronic e-Textile with Touch/Strain Sensing for Friendly Epidermal Electronics

  • Research Article
  • Published:
Advanced Fiber Materials Aims and scope Submit manuscript

Abstract

Flexible ionotronic devices have great potential to revolutionize epidermal electronics. However, the lack of breathability in most ionotronic devices is a significance barrier to practical application. Herein, a breathable kirigami-shaped ionotronic e-textile with two functions of sensing (touch and strain) is designed, by integrating silk fabric and kirigami-shaped ionic hydrogel. The kirigami-shaped ionic hydrogel, combined with fluffy silk fabric, allows the ionotronic e-textile to achieve excellent breathability and comfortability. Furthermore, the fabricated ionotronic e-textile can precisely perform the function of touch sensing and strain perception. For touch-sensing, the ionotronic e-textile can detect the position of finger touching point with a fast response time (3 ms) based on the interruption of the ion field. For strain sensing, large workable strain range (> 100%), inconspicuous drift (< 0.78%) and long-term stability (> 10,000 cycles) is demonstrated. On the proof of concept, a fabric keyboard and game controlling sleeve have been designed to display touch and strain sensing functions. The ionotronic e-textile break through the bottlenecks of traditional wearable ionotronic devices, suggesting a great promising application in future wearable epidermal electronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Yin J, Li X, Yu J, Zhang Z, Zhou J, Guo W. Generating electricity by moving a droplet of ionic liquid along graphene. Nat Nanotechnol 2014;9:378.

    Article  CAS  Google Scholar 

  2. Zhang Y, Jeong CK, Wang J, Chen X, Choi KH, Chen L-Q, Chen W, Zhang QM, Wang Q. Hydrogel ionic diodes toward harvesting ultralow-frequency mechanical energy. Adv Mater 2021;33:2103056.

    Article  CAS  Google Scholar 

  3. Parida K, Kumar V, Jiangxin W, Bhavanasi V, Bendi R, Lee PS. Highly transparent stretchable, and self-healing ionic-skin triboelectric nanogenerators for energy harvesting and touch applications. Adv Mater. 2017;29:1702181.

    Article  Google Scholar 

  4. Yao B, Wu S, Wang R, Yan Y, Cardenas A, Wu D, Alsaid Y, Wu W, Zhu X, He X. Hydrogel ionotronics with ultra-low impedance and high signal fidelity across broad frequency and temperature ranges. Adv Func Mater 2022;32:2109506.

    Article  CAS  Google Scholar 

  5. Xu L, Huang Z, Deng Z, Du Z, Sun TL, Guo Z-H, Yue K. A transparent, highly stretchable, solvent-resistant, recyclable multifunctional ionogel with underwater self-healing and adhesion for reliable strain sensors. Adv Mater 2021;33:2105306.

    Article  CAS  Google Scholar 

  6. Nie B, Li R, Cao J, Brandt JD, Pan T. Flexible transparent iontronic film for interfacial capacitive pressure sensing. Adv Mater 2015;27:6055.

    Article  CAS  Google Scholar 

  7. Sun L, Huang H, Ding Q, Guo Y, Sun W, Wu Z, Qin M, Guan Q, You Z. Highly transparent, stretchable, and self-healable ionogel for multifunctional sensors, triboelectric nanogenerator, and wearable fibrous electronics. Adv Fiber Mater 2022;4:98.

    Article  CAS  Google Scholar 

  8. Liu YH, Zhu LQ, Feng P, Shi Y, Wan Q. Freestanding artificial synapses based on laterally proton-coupled transistors on chitosan membranes. Adv Mater 2015;27:5599.

    Article  CAS  Google Scholar 

  9. Shi J, Ha SD, Zhou Y, Schoofs F, Ramanathan S. A correlated nickelate synaptic transistor. Nat Commun 2013;4:2676.

    Article  Google Scholar 

  10. Bubel S, Menyo MS, Mates TE, Waite JH, Chabinyc ML. Schmitt trigger using a self-healing ionic liquid gated transistor. Adv Mater 2015;27:3331.

    Article  CAS  Google Scholar 

  11. Yang C, Suo Z. Hydrogel ionotronics. Nat Rev Mater 2018;3:125.

    Article  CAS  Google Scholar 

  12. Yiming B, Guo X, Ali N, Zhang N, Zhang X, Han Z, Lu Y, Wu Z, Fan X, Jia Z, Qu S. Ambiently and mechanically stable ionogels for soft ionotronics. Adv Funct Mater 2021;31:2102773.

    Article  CAS  Google Scholar 

  13. Yuk H, Lu B, Zhao X. Hydrogel bioelectronics. Chem Soc Rev 2019;48:1642.

    Article  CAS  Google Scholar 

  14. Liu H, Xu D, Hu B, Jiang J, Li M, Zhao D, Zhai W. Eco-friendly biogenic hydrogel for wearable skin-like iontronics. J Mater Chem A 2021;9:4692.

    Article  CAS  Google Scholar 

  15. Zhou Y, Wan C, Yang Y, Yang H, Wang S, Dai Z, Ji K, Jiang H, Chen X, Long Y. Highly Stretchable, elastic, and ionic conductive hydrogel for artificial soft electronics. Adv Funct Mater 2019;29:1806220.

    Article  Google Scholar 

  16. Song J, Chen S, Sun L, Guo Y, Zhang L, Wang S, Xuan H, Guan Q, You Z. Mechanically and electronically robust transparent organohydrogel fibers. Adv Mater 2020;32:1906994.

    Article  CAS  Google Scholar 

  17. Ma M, Shang Y, Shen H, Li W, Wang Q. Highly transparent conductive ionohydrogel for all-climate wireless human-motion sensor. Chem Eng J 2021;420:129865.

    Article  CAS  Google Scholar 

  18. Ge G, Zhang Y, Shao J, Wang W, Si W, Huang W, Dong X. Stretchable, transparent, and self-patterned hydrogel-based pressure sensor for human motions detection. Adv Funct Mater 2018;28:1802576.

    Article  Google Scholar 

  19. Cai G, Wang J, Qian K, Chen J, Li S, Lee PS. Extremely stretchable strain sensors based on conductive self-healing dynamic cross-links hydrogels for human-motion detection. Adv Sci 2017;4:1600190.

    Article  Google Scholar 

  20. Wang Y, Tebyetekerwa M, Liu Y, Wang M, Zhu J, Xu J, Zhang C, Liu T. Extremely stretchable and healable ionic conductive hydrogels fabricated by surface competitive coordination for human-motion detection. Chem Eng J 2021;420:127637.

    Article  CAS  Google Scholar 

  21. Pei X, Zhang H, Zhou Y, Zhou L, Fu J. Stretchable, self-healing and tissue-adhesive zwitterionic hydrogels as strain sensors for wireless monitoring of organ motions. Mater Horiz 1872;2020:7.

    Google Scholar 

  22. Zhu Y, Zhang J, Song J, Yang J, Du Z, Zhao W, Guo H, Wen C, Li Q, Sui X, Zhang L. A multifunctional pro-healing zwitterionic hydrogel for simultaneous optical monitoring of ph and glucose in diabetic wound treatment. Adv Funct Mater 2020;30:1905493.

    Article  CAS  Google Scholar 

  23. Niu Y, Liu H, He R, Luo M, Shu M, Xu F. Environmentally compatible wearable electronics based on ionically conductive organohydrogels for health monitoring with thermal compatibility anti-dehydration underwater adhesion. Small 2021;17:2101151.

    Article  CAS  Google Scholar 

  24. Pan S, Zhang F, Cai P, Wang M, He K, Luo Y, Li Z, Chen G, Ji S, Liu Z, Loh XJ, Chen X. Mechanically interlocked hydrogel-elastomer hybrids for on-skin electronics. Adv Func Mater 2020;30:1909540.

    Article  CAS  Google Scholar 

  25. Tao K, Chen Z, Yu J, Zeng H, Wu J, Wu Z, Jia Q, Li P, Fu Y, Chang H, Yuan W. Ultra-sensitive, deformable, and transparent triboelectric tactile sensor based on micro-pyramid patterned ionic hydrogel for interactive human-machine. Interfaces 2022;9:2104168.

    CAS  Google Scholar 

  26. Xu Z, Zhou F, Yan H, Gao G, Li H, Li R, Chen T. Anti-freezing organohydrogel triboelectric nanogenerator toward highly efficient and flexible human-machine interaction at − 30 °C. Nano Energy 2021;90:106614.

    Article  CAS  Google Scholar 

  27. Amoli V, Kim JS, Kim SY, Koo J, Chung YS, Choi H, Kim DH. Ionic tactile sensors for emerging human-interactive technologies: a review of recent progress. Adv Funct Mater 2020;30:1904532.

    Article  CAS  Google Scholar 

  28. Zha X-J, Zhang S-T, Pu J-H, Zhao X, Ke K, Bao R-Y, Bai L, Liu Z-Y, Yang M-B, Yang W. Nanofibrillar poly(vinyl alcohol) ionic organohydrogels for smart contact lens and human-interactive sensing. ACS Appl Mater Interfaces 2020;12:23514.

    Article  CAS  Google Scholar 

  29. Callens SJP, Zadpoor AA. From flat sheets to curved geometries: Origami and kirigami approaches. Mater Today 2018;21:241.

    Article  Google Scholar 

  30. Li Y, Zhang Q, Hong Y, Yin J. 3D Transformable Modular Kirigami Based Programmable Metamaterials. Adv Funct Mater 2021;31:2105641.

    Article  CAS  Google Scholar 

  31. Guo Z, Yu Y, Zhu W, Zhang Q, Liu Y, Zhou J, Wang Y, Xing J, Deng Y. Kirigami-based stretchable, deformable, ultralight thin-film thermoelectric generator for BodyNET application. Adv Energy Mater 2022;12:2102993.

    Article  CAS  Google Scholar 

  32. Blees MK, Barnard AW, Rose PA, Roberts SP, McGill KL, Huang PY, Ruyack AR, Kevek JW, Kobrin B, Muller DA, McEuen PL. Graphene kirigami. Nature 2015;524:204.

    Article  CAS  Google Scholar 

  33. Li X, Zhu P, Zhang S, Wang X, Luo X, Leng Z, Zhou H, Pan Z, Mao Y. A Self-supporting, conductor-exposing, stretchable, ultrathin, and recyclable kirigami-structured liquid metal paper for multifunctional e-skin. ACS Nano. 2022.

  34. Yu Y, Peng S, Sha Z, Cheng TX, Wu S, Wang CH. High-precision, stretchable kirigami-capacitive sensor with ultra-low cross-sensitivity for body temperature monitoring. J Mater Chem A 2021;9:24874.

    Article  CAS  Google Scholar 

  35. Randall CL, Kalinin YV, Jamal M, Manohar T, Gracias DH. Three-dimensional microwell arrays for cell culture. Lab Chip 2011;11:127.

    Article  CAS  Google Scholar 

  36. Yan Z, Han M, Shi Y, Badea A, Yang Y, Kulkarni A, Hanson E, Kandel ME, Wen X, Zhang F, Luo Y, Lin Q, Zhang H, Guo X, Huang Y, Nan K, Jia S, Oraham AW, Mevis MB, Lim J, Guo X, Gao M, Ryu W, Yu KJ, Nicolau BG, Petronico A, Rubakhin SS, Lou J, Ajayan PM, Thornton K, Popescu G, Fang D, Sweedler JV, Braun PV, Zhang H, Nuzzo RG, Huang Y, Zhang Y, Rogers JA. Three-dimensional mesostructures as high-temperature growth templates, electronic cellular scaffolds, and self-propelled microrobots. Proc Natl Acad Sci U S A2017;114:E9455.

    Article  CAS  Google Scholar 

  37. Morikawa Y, Yamagiwa S, Sawahata H, Numano R, Koida K, Ishida M, Kawano T. Ultrastretchable Kirigami. Bioprobes 2018;7:1701100.

    Google Scholar 

  38. Kim T, Lee Y-G. Shape transformable bifurcated stents. Sci Rep 2018;8:13911.

    Article  Google Scholar 

  39. Gao B, Elbaz A, He Z, Xie Z, Xu H, Liu S, Su E, Liu H, Gu Z. Bioinspired Kirigami fish-based highly stretched wearable biosensor for human biochemical-physiological hybrid monitoring. Adv Mater Technol 2018;3:1700308.

    Article  Google Scholar 

  40. Zhao R, Lin S, Yuk H, Zhao X. Kirigami enhances film adhesion. Soft Matter 2018;14:2515.

    Article  CAS  Google Scholar 

  41. Shyu TC, Damasceno PF, Dodd PM, Lamoureux A, Xu L, Shlian M, Shtein M, Glotzer SC, Kotov NA. A kirigami approach to engineering elasticity in nanocomposites through patterned defects. Nat Mater 2015;14:785.

    Article  CAS  Google Scholar 

  42. Vachicouras N, Tringides CM, Campiche PB, Lacour SP. Engineering reversible elasticity in ductile and brittle thin films supported by a plastic foil. Extreme Mech Lett 2017;15:63.

    Article  Google Scholar 

  43. Bertoldi K, Reis PM, Willshaw S, Mullin T. Negative Poisson’s ratio behavior induced by an elastic instability. Adv Mater 2010;22:361.

    Article  CAS  Google Scholar 

  44. Xuan Y, Hara H, Honda S, Li Y, Fujita Y, Arie T, Akita S, Takei K. Wireless, minimized, stretchable, and breathable electrocardiogram sensor system. Appl Phys  Rev. 2022;9:011425.

    CAS  Google Scholar 

  45. Yeon H, Lee H, Kim Y, Lee D, Lee Y, Lee J-S, Shin J, Choi C, Kang J-H, Suh JM, Kim H, Kum HS, Lee J, Kim D, Ko K, Ma BS, Lin P, Han S, Kim S, Bae S-H, Kim T-S, Park M-C, Joo Y-C, Kim E, Han J, Kim J. Long-term reliable physical health monitoring by sweat pore inspired perforated electronic skins. Sci Adv 2021;7:eabg8459.

    Article  Google Scholar 

  46. Kim C-C, Lee H-H, Oh Kyu H, Sun J-Y. Highly stretchable, transparent ionic touch panel. Science 2016;353:682.

    Article  CAS  Google Scholar 

  47. Wang Q, Jian M, Wang C, Zhang Y. Carbonized silk nanofiber membrane for transparent and sensitive electronic skin. Adv Func Mater 2017;27:1605657.

    Article  Google Scholar 

  48. Wang C, Xia K, Zhang Y, Kaplan DL. Silk-based advanced materials for soft electronics. Acc Chem Res 2019;52:2916.

    Article  CAS  Google Scholar 

  49. Wen D-L, Pang Y-X, Huang P, Wang Y-L, Zhang X-R, Deng H-T, Zhang X-S. Silk fibroin-based wearable all-fiber multifunctional sensor for smart clothing. Adv Fiber Mater. 2022.

  50. Pan S, Zhu M. Nanoprocessed silk makes skin feel cool. Adv Fiber Mater 2022;4:319.

    Article  Google Scholar 

  51. Lu H, Jian M, Yin Z, Xia K, Shi S, Zhang M, Wang H, Liang X, Ma W, Zhang X, Zhang Y. Silkworm silk fibers with multiple reinforced properties obtained through feeding Ag nanowires. Adv Fiber Mater 2022;4:547.

    Article  CAS  Google Scholar 

  52. Qiu W, Liu XY. Recent progress of applying mesoscopic functionalization engineering principles to spin advanced regenerated silk fibroin fibers. Adv Fiber Mater 2022;4:390.

    Article  CAS  Google Scholar 

  53. Dong X, Liu Q, Liu S, Wu R, Ma L. Silk fibroin based conductive film for multifunctional sensing and energy harvesting. Adv Fiber Mater. 2022;4:885–93.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Shandong Province Key Research and Development Plan (2019JZZY010335, 2019JZZY010340), Anhui Province Special Science and Technology Project (201903a05020028), Shandong Provincial Universities Youth Innovation Technology Plan Team (2020KJA013).

Author information

Authors and Affiliations

Authors

Contributions

LH, LQ and MT: conceptualization, methodology, and supervision. RX investigation, resources, data curation, and writing. MS, JL, SZ: resources, validation, and software. All authors have given approval to the final version of the manuscript.

Corresponding authors

Correspondence to Hong Liu, Lijun Qu or Mingwei Tian.

Ethics declarations

Conflicts of interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Movie showing the fabrication of the Kirigami structure ionic hydrogel (Movie S1)

Movie showing the touching type function of the fabric keyboard. (Movie S2)

Movie showing the pully function of the fabric keyboard. (Movie S3)

Movie showing the game controlling of the strain-sensing sleeve. (Movie S4)

Supplementary file1 (DOCX 4158 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, R., She, M., Liu, J. et al. Breathable Kirigami-Shaped Ionotronic e-Textile with Touch/Strain Sensing for Friendly Epidermal Electronics. Adv. Fiber Mater. 4, 1525–1534 (2022). https://doi.org/10.1007/s42765-022-00186-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42765-022-00186-z

Keywords

Navigation